Determination of Arnica foliosa Nutt. fatty acids content by GC/MS method
DOI:
https://doi.org/10.15587/2519-4852.2020.216474Keywords:
Arnica foliosa Nutt., herb, fatty acids, GC/MS, linolenic acid, linoleic acidsAbstract
Medicinal plants have been considered as an important source for the prevention and treatment of various diseases. The genus Arnica L. is a genus of Asteraceae family, many species of which are used in traditional medicine. Arnica chamissonis Less. and Arnica foliosa Nutt., which belong to plants of the genus Arnica L., are successfully grown in the culture. There is insufficient information in the literature on the biologically active substances of Arnica foliosa Nutt. The presence of sesquiterpene lactones in the leaves and inflorescences is indicated. The flowers contain polysaccharides, monosaccharides, which mainly contain D-glucose and D-xylose, as well as phenolic compounds (quercetin, luteolin, kaempferol) and essential oils.
The aim. The aim of our study was to identify and determine the quantitative content of fatty acids by gas chromatography/mass spectrometry method (GC/MS) in Arnica foliosa Nutt. herb.
Materials and methods. The determination of fatty acids composition of Arnica foliosa Nutt. was carried out by gas chromatograph Agilent 6890N with a mass detector 5973 inert (Agilent Technologies, USA).
Results. The analysis of Arnica foliosa Nutt. herb showed a mixture of saturated (1.61 mg/g; 48.79 %) and unsaturated (1.69 mg/g; 51.21 % from total content acids) fatty acids. The main components of Arnica foliosa Nutt. herb were palmitic (1.02 mg/g; 30.91 % from total content acids), linolenic (0.96 mg/g; 29.09 % from total content acids) and linoleic (0.67 mg/g; 20.30 % from total content acids) acids. This raw material is a source of essential fatty acids, such as omega-3 (linolenic acid) and omega-6 (linoleic acid).
Conclusions. As a result of Arnica foliosa Nutt. research, the presence of fatty acids is established in its raw material. The dominant fatty acids in the studied raw material were palmitic, linolenic and linoleic acids, the content of which was 30.91 % (1.02 mg/g), 29.09 % (0.96 mg/g) and 20.30 % (0.67 mg/g) from total content acids, respectively. The result shows that Arnica foliosa Nutt. is the source of fatty acids, so the use of this plant raw material for new remedies is possible in the future
References
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Sinichenko, A., Demydiak, O. (2021). Determination of Amino Acids of Cultivated Species of the Genus Primula L. Biointerface Research in Applied Chemistry, 11 (2), 8969–8977. doi: http://doi.org/10.33263/briac112.89698977
- Stoiko, L., Kurylo, K. (2018). Development of optimal technology of alcohol extract centaurium erythraea rafn. herb. Archives of the Balkan Medical Union, 53 (4), 523–528. doi: http://doi.org/10.31688/abmu.2018.53.4.06
- Hassan, N., Wali, H., Faiz-Ul-Hassan, Shuaib, M., Nisar, M., Din, M. U. et. al. (2018). Ethnobotanical study of medicinal plants used for primary health care in Shergarh, District Mardan, Pakistan. Biointerface Research in Applied Chemistry, 8 (5), 3575–3582.
- Mohammed, A. H. (2019). Importance of Medicinal Plants. Research in Pharmacy and Health Sciences, 5 (2), 124–125. doi: http://doi.org/10.32463/rphs.2019.v05i02.01
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Basaraba, R. (2019). Determination of amino acids and sugars content in antennaria dioica gaertn. International Journal of Applied Pharmaceutics, 11 (5), 39–43. doi: http://doi.org/10.22159/ijap.2019v11i5.33909
- Bessada, S. M. F., Barreira, J. C. M., Oliveira, M. B. P. P. (2015). Asteraceae species with most prominent bioactivity and their potential applications: A review. Industrial Crops and Products, 76, 604–615. doi: http://doi.org/10.1016/j.indcrop.2015.07.073
- Ekenäs, C., Rosén, J., Wagner, S., Merfort, I., Backlund, A., Andreasen, K. (2009). Secondary chemistry and ribosomal DNA data congruencies inArnica(Asteraceae). Cladistics, 25 (1), 78–92. doi: http://doi.org/10.1111/j.1096-0031.2008.00244.x
- Chevallier, A. (1996). Encyclopedia of Medicinal Plants. New York: Publishin, 170.
- Melnikova, T. M. (2005). Osobennosti vegetativnogo razmnozheniia arniki Shamisso. Novye i netraditsionnye rasteniia i perspektivy ikh ispolzovaniia. Puschino, 3, 369–371.
- Kriplani, P., Guarve, K., Baghael, U. S. (2017). Arnica montana L. – a plant of healing: review. Journal of Pharmacy and Pharmacology, 69 (8), 925–945. doi: http://doi.org/10.1111/jphp.12724
- Surmacz-Magdziak, A., Sugier, D. (2012). In vitro propagation of Arnica montana L.: an endangered herbal species of great importance to medicine. Acta Scientiarum Polonorum Hortorum Cultus, 11 (2), 127–140.
- Kalliantas, D., Kallianta, M., Kordatos, K., Karagianni, S. (2020). The nanostructure character of Arnica montana as ultra high diluted succussed solution medicinal product. Recent advances and prospects. Journal of Nanomedicine, 3 (1), 1021.
- Ganzera, M., Egger, C., Zidorn, C., Stuppner, H. (2008). Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 614 (2), 196–200. doi: http://doi.org/10.1016/j.aca.2008.03.023
- Petrova, M., Zayova, E., Yankova, E., Baldzhiev, G. (2011). Plant regeneration from callus culture of Arnica montana. Romanian Biotechnological Letters, 16 (1), 92–97.
- Staneva, J., Denkova, P., Todorova, M., Evstatieva, L. (2011). Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 54 (1), 94–99. doi: http://doi.org/10.1016/j.jpba.2010.08.018
- Sugier, D., Sugier, P., Jakubowicz-Gil, J., Winiarczyk, K., Kowalski, R. (2019). Essential Oil from Arnica Montana L. Achenes: Chemical Characteristics and Anticancer Activity. Molecules, 24 (22), 4158. doi: http://doi.org/10.3390/molecules24224158
- Willuhn, G., Kresken, J., Merfort J. (1983). Arnikablüten: Identitäts – und Reinheitsprüfung, Dünnschichtchromatographie der Sesquiterpenlactone und Flavonoide. Deutsche Apotheker-Zeitung, 123 (49), 2431–2434.
- Hladysh, T., Saska, I., Demydiak, O. (2016). Fenolni spoluky arniky lystianoi. Kh Mizhnarodnyi medychnyi konhres studentiv i molodykh uchenykh. Ternopil, 222.
- Husak, L., Dakhym, I., Marchyshyn, S., Nakonechna, S. (2018). Determination of sugars and fructans content in Stachys sieboldii. International Journal of Green Pharmacy, 12, 70–74. doi: http://doi.org/10.22377/ijgp.v12i01.1527
- Atolani, O., Adeniyi, O., Kayode, O., Adeosun, C. (2015). Direct Preparation of Fatty Acid methyl Esters and Determination of in vitro Antioxidant Potential of Lipid from Fresh Sebal causarium Seed. Journal of Applied Pharmaceutical Science, 5, 24–28. doi: http://doi.org/10.7324/japs.2015.50305
- Stoiko, L. I., Gusak, L. V., Marchishin, S. M., Demidiak, O. L. (2015). Issledovanie zhirnokislotnogo sostava travy zolototysiachnika obyknovennogo i travy chistetsa Zibolda. Meditsina i obrazovanie v Sibiri, 6, 1–9.
- Iosypenko, O. O., Kyslychenko, V. S., Omelchenko, Z. I., Burlaka, I. S. (2019). Fatty acid composition of vegetable marrows and zucchini leaves. Pharmacia, 66 (4), 201–207. doi: http://doi.org/10.3897/pharmacia.66.e37893
- Whelan, J., Fritsche, K. (2013). Linoleic Acid. Advances in Nutrition, 4 (3), 311–312. doi: http://doi.org/10.3945/an.113.003772
- Rajaram, S. (2014). Health benefits of plant-derived α-linolenic acid. The American Journal of Clinical Nutrition, 100 (suppl_1), 443S–448S. doi: http://doi.org/10.3945/ajcn.113.071514
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Лілія Іллівна Будняк, Людмила Володимирівна Слободянюк, Світлана Михайлівна Марчишин, Ольга Лютославівна Демидяк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.