The study of carboxylic acids in flowers and leaves of Veronica chamaedrys L. and Veronica teucrium L.

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.221078

Keywords:

Veronica chamaedrys L., Veronica teucrium L., carboxylic acids, chromatography-mass spectrometry

Abstract

The aim. The genus Veronica (Veronica L.), family Plantaginaceae Juss. in the flora of Ukraine is represented by 64 species; Veronica chamaedrys L. and Veronica teucrium L. are widespread in the Kharkiv region. Plants are used in folk medicine as expectorants, anti-inflammatory, diaphoretic, anti-allergic, choleretic, antispasmodic, anticonvulsant, diuretic, sedative, wound healing and antibacterial agents. The aim of this work was to study the carboxylic acids of flowers and leaves of Veronica chamaedrys L. and flowers and leaves of Veronica teucrium L.

Materials and methods. The objects of the study were flowers and leaves of Veronica chamaedrys L. and Veronica teucrium L., harvested in the flowering phase in 2018 in Kharkiv region, Ukraine. The study of carboxylic acids was performed by chromatography-mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph with a 5973N mass spectrometric detector. Identification of acid methyl esters was performed using data from the mass spectrum library NIST 05 and Willey 2007 in combination with programs for the identification of AMDIS and NIST; also compared the retention time with the retention time of standard compounds.

Results. In the flowers and leaves of Veronica teucrium L. 35 carboxylic acids were identified, the total content of which is 5.55 % and 2.93 %, respectively. 31 and 32 carboxylic acids were identified in the flowers and leaves of Veronica chamaedrys L., their total content is 5.39 % and 7.45 %, respectively.

Conclusions. It is established that the flowers and leaves of Veronica chamaedrys L. are characterized by a higher content of carboxylic acids compared to the flowers and leaves of Veronica teucrium L. As chemotaxonomic markers of flowers and leaves the following compounds can be used: α-furanic acid for Veronica chamaedrys L.; veratric, 4-hydroxybenzylacetic and syringic acids for Veronica teucrium L. The obtained results will be the basis for further chemotaxonomic studies

Author Biographies

Аlla Kovaleva, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmacognosy

Тetyana Ilina, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmacognosy

Ain Raal, University of Tartu Nooruse 1, Tartu, Estonia, 50411

PhD, Professor

Institute of Pharmacy

Alina Osmachko, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Assistant-lecturer

Department of Pharmacognosy

Olga Goryacha, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Assistant-lecturer

Department of Pharmacognosy

Yaroslav Rozhkovskyi, Odessa National Medical University Valikhovskiy lane, 2, Odessa, Ukraine, 65082

MD, Professor

Department of Pharmacology and Pharmacognosy

References

  1. The Plant List. A working list of all plant species. Available at: http://www.theplantlist.org/browse/A/Plantaginaceae/Veronica/
  2. Bardy, K. E., Albach, D. C., Schneeweiss, G. M., Fischer, M. A., Schönswetter, P. (2010). Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molecular Phylogenetics and Evolution, 57 (2), 771–786. doi: http://doi.org/10.1016/j.ympev.2010.06.025
  3. Mosyakin, S. L., Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: A nomenclatural checklist. Kyiv: M.G. Kholodny Institute of Botany, 345.
  4. Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/s0192415x19500617
  5. Beara, I., Živković, J., Lesjak, M., Ristić, J., Šavikin, K., Maksimović, Z., Janković, T. (2015). Phenolic profile and anti-inflammatory activity of three Veronica species. Industrial Crops and Products, 63, 276–280. doi: http://doi.org/10.1016/j.indcrop.2014.09.034
  6. Živković, J. Č., Barreira, J. C. M., Šavikin, K. P., Alimpić, A. Z., Stojković, D. S., Dias, M. I. et. al. (2017). Chemical Profiling and Assessment of Antineurodegenerative and Antioxidant Properties of Veronica teucrium L. And Veronica jacquinii Baumg. Chemistry & Biodiversity, 14 (8), e1700167. doi: http://doi.org/10.1002/cbdv.201700167
  7. Mocan, A., Vodnar, D., Vlase, L., Crișan, O., Gheldiu, A.-M., Crișan, G. (2015). Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties. International Journal of Molecular Sciences, 16 (9), 21109–21127. doi: http://doi.org/10.3390/ijms160921109
  8. Tinkov, A. A., Gatiatullina, E. R., Nemereshina, O. N., Nikanorov, A. A., Aminin, D. L., Gritsenko, V. A. (2014). Sravnitelnii analiz vliianiia rastenii semeistva Podorozhnikovye na rost E. coli in vitro. BONTS UrO RAN, 2, 16.
  9. Taskova, R., Peev, D., Handjieva, N. (2002). Iridoid glucosides of the genus Veronica s.l. and their systematic significance. Plant Systematics and Evolution, 231 (1-4), 1–17. doi: http://doi.org/10.1007/s006060200008
  10. Jensen, S. R., Albach, D. C., Ohno, T., Grayer, R. J. (2005). Veronica: Iridoids and cornoside as chemosystematic markers. Biochemical Systematics and Ecology, 33 (10), 1031–1047. doi: http://doi.org/10.1016/j.bse.2005.03.001
  11. Crişan, G., Vlase, L., Balica, G., Muntean, D., Ştefănescu, C., Păltinean, R. et. al. (2010). LC/MS analysis of aucubin and catalpol of some Veronica species. Farmacia, 58, 237–242.
  12. Kovalyova, A. M., Ilina, T. V., Osmachko, A. P., Koshovyi, O. M., Grudko, I. V. (2020). Carboxylic Acids from Herbs of Veronica austriaca, V. cuneifolia, and V. armena. Chemistry of Natural Compounds, 56 (6), 1111–1113. doi: http://doi.org/10.1007/s10600-020-03238-1
  13. Crişan, G., Tămaş, M., Miclăuş, V., Krausz, T., Sandor, V. A. (2007). A comparative study of some Veronica L. species. Revista Medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 111, 280–284.
  14. Gusev, N. F., Nemereshina, O. N., Petrova, G. V. (2013). Izuchenie biologicheski aktivnikh veschestv v rasteniiakh Veronica chamaedrys L. i V. officinalis L. Uspekhi sovremennogo estestvoznaniia, 8, 113–119.
  15. Marcenco, A. (2008). Studiul compozitiel chimice al Veronica chamaedrys L. Book of abstracts of the International Conference of Young Researchers. Chişinău, 22.
  16. Milian, I. I. (2016). Farmakohnostychne doslidzhennia roslyn rodu Veronika (Veronica L.). Lviv, 22.
  17. Marchyshyn, S. M. Milian, I. I. (2016). The content of fatty acids in lipophilic extracts of Veronica chamaedrys L. and Veronica officinalis L. Journal of Education, Health and Sport, 6 (3), 91–96.
  18. Nikolova, M., R. G. (2005). A HPLC Analysis on Interpopulational Variations in the Flavonoid Composition of Veronica chamaedrys. International Journal of Botany, 2 (1), 7–10. doi: http://doi.org/10.3923/ijb.2006.7.10
  19. Nikolova, M., Gevrenova, R., Ivancheva, S. (2003). External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae). Acta pharmaceutica, 53, 145–149.
  20. Osmachko, A., Kovaleva, A., Ilyina, T., Koshovyi, O., Sidora, N. (2017). Chromatography-mass spectrometry study of low molecular aliphatic, fatty and aromatic acids of Veronica teucrium L. rhizomes. ScienceRise: Pharmaceutical Science, 2 (6), 22–25. doi: http://doi.org/10.15587/2519-4852.2017.99317
  21. Osmachko, A. P., Kovaleva, A. M., Ilyina, T. V., Koshovyi, O. M. (2017). Carboxylic acids of phenolic complexes from Veronica teucrium L. News of Pharmacy, 3 (91), 21–27. doi: http://doi.org/10.24959/nphj.17.2179
  22. Williamson, G., Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81 (1), 243S–255S. doi: http://doi.org/10.1093/ajcn/81.1.243s
  23. Pankaj, G. J, Sanjay, J. S. (2016). Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats. EXCLI J., 15, 599–613. doi: http://doi.org/10.17179/excli2016-394
  24. Choi, R., Kim, B. H., Naowaboot, J., Lee, M. Y., Hyun, M. R., Cho, E. J. et. al. (2011). Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Experimental and Molecular Medicine, 43 (12), 676–683. doi: http://doi.org/10.3858/emm.2011.43.12.078
  25. Hsu, C.-L., Yen, G.-C. (2008). Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Molecular Nutrition & Food Research, 52 (1), 53–61. doi: http://doi.org/10.1002/mnfr.200700393
  26. Chen, S., Wen, X., Zhang, W., Wang, C., Liu, J., Liu, C. (2016). Hypolipidemic effect of oleanolic acid is mediated by the miR‐98‐5p/PGC‐1β axis in high‐fat diet‐induced hyperlipidemic mice. The FASEB Journal, 31 (3), 1085–1096. doi: http://doi.org/10.1096/fj.201601022r

Downloads

Published

2020-12-30

How to Cite

Kovaleva А., Ilina Т., Raal, A., Osmachko, A., Goryacha, O., & Rozhkovskyi, Y. (2020). The study of carboxylic acids in flowers and leaves of Veronica chamaedrys L. and Veronica teucrium L. ScienceRise: Pharmaceutical Science, (6 (28), 26–34. https://doi.org/10.15587/2519-4852.2020.221078

Issue

Section

Pharmaceutical Science