Cell immunity of laboratory animals under the influence of 5-indolylmethylene rhodanine-3-carboxylic/sulphonic acid derivative

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.224328

Keywords:

2-thioxo-4-thiazolidinones, indolecarbaldehydes, synthesis, cellular immunity, phagocytosis, immunotropic activity, leukocytes, guinea pigs

Abstract

The aim. To study the cell immunity status under influence of 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-propionic acid, as a prominent 4-thiazolidinone derivative and a class of biologically active compounds with polypharmacological properties.

Materials and methods. Experimental method on the model of laboratory animals (guinea pigs); intradermal allergy tests; relative and absolute content in the peripheral blood of T- and B-lymphocytes subpopulations; hematological indexies: index of the ratio of lymphocytes and monocytes, index of the ratio of neutrophils and monocytes, index of the ratio of neutrophils and eosinophils, phagocytic index, phagocytic number; ELISA; organic synthesis; pharmacological screening.

Results. The effect of 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-propionic acid has antifungal properties and affect cellular component of immunity in vivo in the guinea pigs model. There are no changes in the skin of guinea pigs during and after chemical applications of the skin and after intradermal tests. The compound stimulate the immune cells, in particular the lymphocyte (increase in the absolute number of CD3 T-lymphocytes by 21.46 % and the absolute number of CD8 T-suppressors by 27.15 %), but with a selective inhibitory effect on certain units (decrease the relative number of NK cells CD16 by 11.57 % and B-lymphocytes CD22 by 23.08 %). There was an increase in the activity of the macrophage phagocytic system (increase in PN by 439.87 % and PI by 62.73 % at 120 minutes), which indicates the reliability of the absorbing function of phagocytes, but with a decrease in their ability to endocytosis (PCI decreased significantly by 78,72 %).

Conclusions. Synthesized 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-propionic acid has a selective activating effect on certain parts of cellular immunity and on phagocytic activity. Derivate influence on the phagocytic activity of neutrophils is ambiguous, and the effect of the compound directed to the cellular part of the immune system does not cause cellular immunodeficiency. The studied derivative is promising for further study of the drug-like molecule with antifungal and antitumor effects

Author Biographies

Yulian Konechnyi, Lviv Polytechnic National University; Danylo Halytsky Lviv National Medical University

MD, Postgraduate student

Preparatory department for foreign citizens;

Department of microbiology

Oksana Hrushka, Danylo Halytsky Lviv National Medical University

PhD, Senior Researcher

Central Research Laboratory and Industrial Toxicology Laboratory

Hanna Pryzyhley, Danylo Halytsky Lviv National Medical University

Researcher

Central Research Laboratory and Industrial Toxicology Laboratory

Roksolana Konechna, Lviv Polytechnic National University

PhD, Associate Professor

Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology

Andrii Lozynskyi, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Olena Korniychuk, Danylo Halytsky Lviv National Medical University

MD, Professor, Head of Department

Department of Microbiology

Roman Lesyk, University of Information Technology and Management in Rzeszow; Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical, Organic and Bioorganic Chemistry

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68 (6), 394–424. doi: http://doi.org/10.3322/caac.21492
  2. Global Action Plan on Antimicrobial Resistance. (2015). Microbe Magazine, 10 (9), 354–355. doi: http://doi.org/10.1128/microbe.10.354.1
  3. Wang, S., Zhao, Y., Zhu, W., Liu, Y., Guo, K., Gong, P. (2011). Synthesis and Anticancer Activity of Indolin-2-one Derivatives Bearing the 4-Thiazolidinone Moiety. Archiv Der Pharmazie, 345 (1), 73–80. doi: http://doi.org/10.1002/ardp.201100082
  4. Lozynskyi, A., Zimenkovsky, B., Radko, L., Stypula-Trebas, S., Roman, O., Gzella, A. K., Lesyk, R. (2017). Synthesis and cytotoxicity of new thiazolo[4,5-b]pyridine-2(3H)-one derivatives based on α,β-unsaturated ketones and α-ketoacids. Chemical Papers, 72 (3), 669–681. doi: http://doi.org/10.1007/s11696-017-0318-1
  5. Kryshchyshyn-Dylevych, A. P., Zelisko, N. I., Grellier, P., Lesyk, R. B. (2020). Preliminary evaluation of thiazolidinone- and pyrazoline-related heterocyclic derivatives as potential antimalarial agents. Biopolymers and Cell, 36 (1), 47–59. doi: http://doi.org/10.7124/bc.000a20
  6. El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R. et. al. (2009). Synthesis and antiviral activity of new pyrazole and thiazole derivatives. European Journal of Medicinal Chemistry, 44 (9), 3746–3753. doi: http://doi.org/10.1016/j.ejmech.2009.03.038
  7. Horishny, V., Kartsev, V., Geronikaki, A., Matiychuk, V., Petrou, A., Glamoclija, J. et. al. (2020). 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic Acids as Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules, 25 (8), 1964. doi: http://doi.org/10.3390/molecules25081964
  8. Konechnyi, Y. T., Lozynskyi, A. V., Horishny, V. Y., Konechna, R. T., Vynnytska, R. B., Korniychuk, O. P., Lesyk, R. B. (2020). Synthesis of indoline-thiazolidinone hybrids with antibacterial and antifungal activities. Biopolymers and Cell, 36 (5), 381–391. doi: http://doi.org/10.7124/bc.000a3a
  9. Ilkiv, I., Lesyk, R., Sklyarov, O. (2017). Evaluation of novel 4-thiazolidinone-based derivatives as possible cytoprotective agents against stress model in rats. Journal of Applied Pharmaceutical Science, 199–203. doi: http://doi.org/10.7324/japs.2017.70129
  10. Geronikaki, A. A., Pitta, E. P., Liaras, K. S. (2013). Thiazoles and Thiazolidinones as Antioxidants. Current Medicinal Chemistry, 20 (36), 4460–4480. doi: http://doi.org/10.2174/09298673113209990143
  11. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23 (1-3), 3–25. doi: http://doi.org/10.1016/s0169-409x(96)00423-1
  12. Institute of Laboratory Animal Resources (US) (1986). Committee on Care U of LA. Guide for the care and use of laboratory animals. US Department of Health and Human Services. Public Health Service. National Institutes of Health.
  13. Suckow, M. A., Stevens, K. A., Wilson, R. P. (Eds.) (2012). The laboratory rabbit, guinea pig, hamster, and other rodents. Academic Press. doi: http://doi.org/10.1016/c2009-0-30495-x
  14. Fischbach, F. T., Dunning, M. B. (2009). A manual of laboratory and diagnostic tests. Lippincott Williams & Wilkins, 1317.
  15. Alekseyeva, O., Duyeva, L. (1978). Allergiya k promyshlennym khimicheskim soyedineniyam. Moscow, 272.
  16. Keohane, E. M., Otto, C. N., Walenga, J. (2019). Rodak’s Hematology-E-Book: Clinical Principles and Applications. Elsevier Health Sciences, 904. doi: http://doi.org/10.1016/c2013-0-19483-4
  17. Pagana, K. D., Pagana, T. (2017). Mosby’s Manual of Diagnostic and Laboratory Tests. Elsevier Health Sciences, 1162.
  18. Clemons, D. J., Seeman, J. L. (2018). The Laboratory Guinea Pig. Taylor & Francis, 177.
  19. Metodychni rekomendatsii dlia otsinky imunnoho statusu liudyny: kliniko-laboratorna diahnostyka alerhichnykh zakhvoriuvan, typuvannia leikotsytiv, otsinka imunohramy (1999). Lviv, 26.
  20. Porushennia imunnoho statusu orhanizmu liudyny za dii khimichnykh chynnykiv ta metody yikh vyznachennia (2007). Kyiv, 33–35.
  21. Zimmerman, K., Moore, D. M., Smith, S. A. (2015). Hematological Assessment in Pet Guinea Pigs (Cavia porcellus). Veterinary Clinics of North America: Exotic Animal Practice, 18 (1), 33–40. doi: http://doi.org/10.1016/j.cvex.2014.09.002
  22. Popov, N. N., Sklyar, A. I. (2017). Fagocytic activity of peripheral blood monocytes in patients with hbv-infections. Clinical & Experimental Pathology, 16 (3), 42–47. doi: http://doi.org/10.24061/1727-4338.xvi.3.61.2017.34
  23. Aminov, R. F., Frolov, O. K. (2015). Vplyv biolohichno aktyvnykh rechovyn solovoho ekstraktu medychnoi piavky na fahotsytarnu aktyvnist neitrofiliv i tsytofotometrychni zminy limfotsytiv krovi liudyny u kulturi. Biolohichni systemy, 7 (1), 108–112.
  24. Maloshtan, L. M., Zeghdani, E. A., Shakina, L. А. (2016). Influence of the ointment, which contains the dry extract of licorice rhizome, on the phagocytic activity of blood neutrophil granulocytes in guinea pigs with experimental dermatitis. Pharmaceutical review, 4, 44–47. doi: http://doi.org/10.11603/2312-0967.2016.4.7120
  25. Klimova, O. M., Kordon, T. I., Ivanenko, M. O. (2012). Kontseptsiia ortobiozu II Mechnykova ta kharakterystyka imunorezystentnosti pry ishemii kyshkivnyka u khvorykh riznoho viku. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia Biolohiia, 32, 154–159.

Downloads

Published

2021-02-27

How to Cite

Konechnyi, Y., Hrushka, O. ., Pryzyhley, H., Konechna, R., Lozynskyi, A., Korniychuk, O., & Lesyk, R. (2021). Cell immunity of laboratory animals under the influence of 5-indolylmethylene rhodanine-3-carboxylic/sulphonic acid derivative. ScienceRise: Pharmaceutical Science, (1 (29), 76–81. https://doi.org/10.15587/2519-4852.2021.224328

Issue

Section

Pharmaceutical Science