Substantiation of technology for obtaining capsules of a multi-component drug with neurotropic action

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.225284

Keywords:

mass for encapsulation, granules, capsules, active pharmaceutical ingredients, technology, quality indicators

Abstract

The aim of the work. Theoretical and experimental substantiation of a rational technology for obtaining a preparation in the form of capsules based on uridine-5-monophosphate of disodium salt, cytidine-5-monophosphate of disodium salt, vitamin B6, thioctic acid and magnesium lactate dihydrate, determination of process parameters that can affect critical quality characteristics active pharmaceutical ingredients in the product and establishing acceptance criteria for each critical process parameter to be used in batch production and process control.

Materials and methods. Objects of the research: masses for encapsulation, granulates and the finished product - capsules with the conventional name “Neuronucleos”. To obtain capsules, active pharmaceutical ingredients (API) were used: uridine-5-monophosphate disodium salt and cytidine-5-monophosphate disodium salt (Shanghai Oripharm Co. Ltd., China), thioctic acid (Shanghai Modern Pharmaceutical Co., Ltd..”, China), pyridoxine hydrochloride (“DSM Nutritional Products GmbH”, Germany), magnesium lactate (“Moes Cantabra S.L.”, Spain). The quality indicators were studied: description, average mass of content and uniformity of mass, uniformity of dosage units, dissolution, accompanying impurities, quantitative content of API. Methods of liquid chromatography and complexometric titration were used.

Results. It has been established that the use of the direct mixing method does not allow obtaining a mass for encapsulation corresponding to the indicator "Bulk density". The use of the wet granulation method in a fluidized bed has been substantiated. It has been shown that it is difficult to perform granulation in a fluidized bed of an API mixture containing thioctic acid. It has been established that it is rational to obtain a mass for encapsulation in two stages: obtaining a granulate from magnesium lactate dihydrate and pyridoxine hydrochloride with a moisturizer solution (sorbitol + uridine-5-monophosphate disodium salt + cytidine-5-monophosphate disodium salt) and then obtaining a mass for encapsulation from granulate, thioctic acid, anhydrous colloidal silicon dioxide and magnesium stearate by the direct mixing method.

Conclusions. On the basis of the performed technological research and analysis of the quality of the obtained capsules, a method for obtaining a capsule mass using the method of wet granulation in a fluidized bed was chosen. The granulation mode was substantiated and the optimal parameters for obtaining a high-quality product were selected, the acceptance criteria for each critical parameter of the technological process were established

Author Biographies

Maksym Almakaiev, National University of Pharmacy

PhD, Senior Researcher, Associate Professor

Department of Cosmetology and Aromology

Larysa Sidenko, Joint Stock Сомраny BIOLIK

PhD, Senior Researcher, Head of Sector

Technological Research Sector

Pharmaceutical Development Department

References

  1. Albin, F. (2016). Dry Agglomeration Technology. Using BEPEX Roller Compaction Technology. New Jersey: Hosokawa MicronPowder Systems, 6.
  2. Serajuddin, A. T. M. (2014). The future of tableting technology. Journal of Excipients and Food Chemicals, 5 (1), 1–4.
  3. Derzhavnyi reiestr likarskykh zasobiv Ukrainy. Available at: http://www.drlz.kiev.ua/
  4. Gosudarstvennii reestr lekarstvennykh sredstv Rossii. Available at: http://grls.rosminzdrav.ru/
  5. Sweetman, S. С. (Ed.) (2009). Martindale: The Complete Drug Reference. London: Pharmaceutical Press, 3694.
  6. Approved Drug Products with Therapeutic Equivalence Evaluations Orange Bookh. Available at: https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
  7. Liapunov, M., Bezuhla, O., Pidpruzhnykov, Yu. et. al. (2012). ST-N MOZU 42-3.0:2011. Likarski zasoby. Farmatsevtychna rozrobka (ICH Q8). Standartyzatsiia farmatsevtychnoi produktsii. Kyiv: MOZ Ukrainy, vyd-vo «MORION», 56.
  8. Alyami, H., Dahmash, E., Bowen, J., Mohammed, A. R. (2017). An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLOS ONE, 12 (6), e0178772. doi: http://doi.org/10.1371/journal.pone.0178772
  9. Muselík, J., Franc, A., Doležel, P., Goněc, R., Krondlová, A., Lukášová, I. (2014). Influence of Process Parameters on Content Uniformity of a Low Dose Active Pharmaceutical Ingredient in a Tablet Formulation According to GMP. Acta Pharmaceutica, 64 (3), 355–367. doi: http://doi.org/10.2478/acph-2014-0022
  10. Mesut, B., Özsoy, Y., Aksu, B. (2015). The Place of Drug Product Critical Quality Parameters in Quality by Design (QBD). Turkish Journal of Pharmaceutical Sciences, 12 (1), 75–92.
  11. Stegemann, S., Connolly, P., Matthews, W., Barnett, R., Aylott, M., Schrooten, K. et. al. (2014). Application of QbD Principles for the Evaluation of Empty Hard Capsules as an Input Parameter in Formulation Development and Manufacturing. AAPS PharmSciTech, 15 (3), 542–549. doi: http://doi.org/10.1208/s12249-014-0094-y
  12. Remya, M. J. (2017). Technology transfer in pharmaceutical industry. The Pharma Innovation Journal, 6 (3), 235–240.
  13. Liapunov, M., Bezuhla, O., Takhtaulova, N. et. al. (2020). ST-N MOZU 42-4.0:2020. Likarski zasoby. Nalezhna vyrobnycha praktyka. Kyiv: MOZ Ukrainy, 338.
  14. Liapunov, M., Bezuhla, O., Pidpruzhnykov, Yu. et. al. (2011). Nastanova ST-N MOZU 42-4.2:2011. Likarski zasoby. Upravlinnia ryzykamy dlia yakosti (ICH Q9). Kyiv: MOZ Ukrainy, 36.
  15. European Pharmacopoeia (2018). Strasbourg: European Department for the Quality of Medicines.
  16. Derzhavna Farmakopeia Ukrainy. Vol. 1 (2015). Kharkiv: Derzhavne pidpryiemstvo “Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”, 1128.
  17. Almakaiev, M. S. (2015) Study of technological properties of active pharmaceutical ingredients for developing the combined medicine for neurofathy complex treatment. Journal of Chemical and Pharmaceutical Research, 7 (3), 1231–1235.
  18. Almakaiev, M. S., Biehunova, N. V. (2017) Vybir parametriv tekhnolohichnoho protsesu otrymannia kapsul bahatokomponentnoho preparatu neirotropnoi dii. Farmakom, 4, 23–28.
  19. Augsburgeg, L. L., Hoag, S. W. (2008). Pharmaceutical dosage form. Tablets. Vol. 2. Informa Healthcare, 227–273. doi: http://doi.org/10.3109/9781420020298
  20. Gowtham, K. D., Pallavi, Ch. (2013). Direct compression – an overview. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4 (1), 155–158.
  21. Walker, G. M., Bell, S. (2007). Co-Melt fluidizer bed granulation of pharmaceutical powders: Improvements in Drug Bioavailability. Chemical Engineering Science, 62 (1-2), 451–462. doi: http://doi.org/10.1016/j.ces.2006.08.074
  22. Darzuli, N., Hroshovyi, T., Sokolova, K., Podpletnyaya, E. (2018) Investigation of the effects of excipients on technological properties tablets of round-leaved wintergreen extract. ScienceRise: Pharmaceutical Science, 2 (12), 43–48. doi: http://doi.org/10.15587/2519-4852.2018.128046
  23. Tryhubchak, O., Gureyeva, S., Yuryeva, O. (2018). Study of excipients quantities influence in the composition of the powder in sachet packages. ScienceRise, 1 (11), 31–35. doi: http://doi.org/10.15587/2519-4852.2018.122007
  24. Uddin, Md. S., Mamun, A. A., Asaduzzaman Md, T. T. (2015). In-process and finished products quality control tests for pharmaceutical tablets. According to Pharmacopoeias. Journal of Chemical and Pharmaceutical Research, 7 (9), 180–185.

Downloads

Published

2021-02-27

How to Cite

Almakaiev, M., & Sidenko, L. (2021). Substantiation of technology for obtaining capsules of a multi-component drug with neurotropic action. ScienceRise: Pharmaceutical Science, (1 (29), 10–16. https://doi.org/10.15587/2519-4852.2021.225284

Issue

Section

Pharmaceutical Science