Багатоквітковість зернових колосових культур – історія та стан вивчення

Автор(и)

  • В. М. Стариченко ННЦ «Інститут землеробства НААН України», Ukraine
  • І. І. Губа ННЦ Інститут землеробства НААН, Ukraine
  • Н. І. Коберник ННЦ Інститут землеробства НААН, Ukraine

DOI:

https://doi.org/10.30835/2413-7510.2018.134368

Ключові слова:

багатоквітковість зернових культур, розгалужений колос, селекція, генетика багатоквітковості, багатозерність

Анотація

У зернових колосових культур основним елементом структури урожаю є продуктивність колосу, яка залежить від кількості колосків, зернин та маси зернини. Цей огляд присвячено вивченню стану проблеми в Україні, в світі та пошуку джерел і можливостей інтродукції багатоквітковості в геном м’якої пшениці та жита. Огляд включає короткий екскурс в історію вивчення багатоквітковості, особливості органогенезу гіллястих форм зернових злаків та основні відомі на даний час знання про генетику формування колосу.

Протягом останніх десяти років у світі значно збільшилася кількість робіт із вивчення багатоквітковості зернових культур із використанням методів молекулярної генетики. Знайдено достатню кількість мутантних форм та ландрас пшениці, які підтверджують можливість існування генетично детермінованої багатоквітковості.

 

Посилання

Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA. Developmental gene evolution and the origin of grass inflorescence diversity. In DE Soltis, PS Soltis, J Leebens-Mack, editors. Developmental Genetics of the Flower. Adv. Bot. Res. 2006; 44: 423–479. DOI: 10.1016/S0065-2296(06)44011-8 2006.

Pennell AL, Halloran GM. Inheritance of supernumerary spikelets in wheat. Euphytica. 1983; 32: 767–776.

Ahren JF, Loomis WE. Floral induction and development in winter wheat. Crop Sci. 1963; 3: 463–466.

Williams RF. The physiology of growth in the wheat plant. III. Growth of the primary shoot and inflorescence. Aust J Biol Sci. 1966; 19: 949–966.

McMaster GS. Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci. 2005; 143: 137–150. DOI:10.1017/S0021859605005083.

Dobrovolskaya O, Martinek P, Voylokov AV, Korzun V, Röder MS, Börner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor Appl Genet. 2009; 119: 867–74. DOI:10.1007/s00122-009-1095-1.

Rawson HM. Spikelet number, its control and relation to yield per ear in wheat. Aust. J Biol Sci. 1973; 23: 1–15.

Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Casal JJ. Autophagy regulated by day length determines the number of fertile florets in wheat. The plant jourmal. 2008; 55(6): 1010–1024. DOI: 10.1111/j.1365-313X.2008.03570.x.

Ying Wang, Fang Miao, Liuling Yan. Branching shoots and spikes from lateral meristems in bread wheat. PLoS One. 2016; 11(3): e0151656. DOI:10.1371/journal.pone.0151656.

Klindworth DL, Williams ND, Joppa LR. Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome. 1990; 33: 509–514.

Yang WY, Lu BR, Hu XR, YuY, Zhang Y. Inheritance of the triple-spikelet character in a Tibetan landrace of common wheat. Genet Resour Crop Ev. 2005; 52: 847–851.

Kobyljanskij VD. Rye. Genetic basics of breeding. Moskow: Kolos, 1982.

Klindworth DL, Williams ND, Joppa LR. Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome. 1990; 33: 515–520.

Zhang R, Wang X, Chen P. Inheritance and mapping of gene controlling four-rowed spike in tetraploid wheat (Triticum turgidum L.). Acta agronomica sinica. 2013; 39: 29–33.

Dobrovol’skaya OB, Martinek P, Adonina IG, Badaeva ED, Orlov YuL, Salina EA, LaikovaLI. Effect of rearrangements of homoeologous group 2 chromosomes of bread wheat on spike morphology. Vavilovskiі zhurnal genetiki i selekcii. 2014; 18(4/1): 672–680.

Fedorov AK. About the branching of spike in winter rye. Trudy Instituta genetiki. 1954; 21: 144–149.

Hucl P, Fowler BJ. Comparison of a branched spike wheat with the cultivars Neepawa and HY320 for grain yield and yield components. Canadian Journal of Plant Science.1992; 72(3): 671–677. DOI: 10.4141/cjps92-083.

Visiulina OD. About finding in Ukraine in the 19th century branching-spikes forms of rye and wheat. Botanichnyi zhurnal AN URSR. 1953; 10(2): 61–64.

Molotkovskyi HKh. On the way to obtain branching-spike rye. Silske hospodarstvo Ukrainy. 1948; 62–63.

Molotkovskyi HKh. Branching-spike winter rye in Bukovina. Selektsiia i nasinnytstvo. 1950; 5: 25.

Molotkovskyi HKh. Branching-spike winter rye in Bukovina. Selekciia i semenovodstvo. 1950; 9: 26–30.

Tsitsin NV. Branched winter rye. Bjulleten' glavnogo botanicheskogo sada. 1951; 10:17–23.

Nikitenko GF.The case of mass branching of the ear of winter rye. Agrobiologija1951; 3: 135–136.

Kuperman FM.On the branched forms of winter wheat, rye and barley. Jarovizacija. Zhurnal po biologii razvitija rastenij. 1940; 2(29): 101–105.

Molotkovs'kij GH. Influence of some environmental conditions on the formation of thebranched ears on rye. Doklady Akademii Nauk SSSR. 1950; LXXII(2): 401–404.

Smirnov VG, Sosnikhina SP. Genetics of rye. Leningrad: LGU, 1984.

Fedorov VS. Branching-spike forms that appeared in the variety of rye Vіatka Moscowskaja, and the chacter of their inheritance. Trudy Petergofskogo biologicheskogo Institua. 1960; 18: 119–132.

Timofeev-Resovskij NV, Ivanov VI. Some questions of phenogenetics. In: Actual issues of modern genetics. Moscow, 1966. P. 114—130.

Nasonova EV. Branched barley. Selekcija i semenovodstvo. 1950; 9,: 77.

Tsitsin NV, Makhalin MA. Polyploid branched rye. Doklady Akademii Nauk SSSR. 1960; 131(5): 1165–1167.

Arbuzova VS, Efremova TT, Martinek P, Chumanova EV, Dobrovolskaya OB. Variability of spike productivity in F2 hybrids obtained by crossing common wheat varieties Novosibirskaya 67, Saratovskaya 29, and Puza-4 to the Skle 123-09 multifloret line. Vavilovskiі zhurnal genetiki i selekcii. 2014; 18(4/1): 704–712.

Arbuzova VS, Dobrovolskaya OB, Martinek P, Chumanova EV, Efremova TT. Inheritance of signs of «manyflowered» common wheat and evaluation of productivity of the spike of F2 hybrids. Vavilovskiі zhurnal genetiki i selekcii. 2016; 20(3): 355–363. DOI: 10.18699/vj16.125.

Kumar N, Kulwal PL, Balyan HS, Gupta PK. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 2007; 19: 163–177.

Wu X, Chang X, Jing R. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE. 2012; 7. e31249. DOI: 10.1371/journal.pone.0031249.

Huijie Zhai, Zhiyu Feng, Jiang Li, Xinye Liu, Shihe Xiao, Zhongfu Ni, Qixin Sun. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density snp and ssr-based linkage map. Front Plant Sci. 2016; 7: 1617. DOI: 10.3389/fpls.2016.01617.

Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol. 2011; 52: 738–749. DOI:10.1093/pcp/pcr025.

Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS. Molecular characterization of the major wheat domestication geneQ. Genetics. 2006; 172: 547–555.

Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor. Appl. Genet. 2000; 100: 686–689.

Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O. Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica. 2008; 163: 193–201.

Faris JD, Zhang Z, Garvin DF, Xu SS. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol. Genet. Genomics. 2014; 289: 641–651.

Wang YS, Du YY, Yang ZY, Chen L, Condon AG, Hu YG. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Res. 2015; 179: 35–43. DOI:10.1016/j.fcr.2015.04.010

Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 2000; 101: 1114–1121. DOI:10.1007/s001220051587.

Snape JW, Butterworth K, Whitechurch E, Worland AJ. Waiting for fine times: genetics of flowering time in wheat. Euphytica. 2001; 119:, 185–190. DOI:10.1023/A:1017594422176.

Faricelli ME, Valárik M, Dubcovsky J. Control of flowering time and spike development in cereals: the earliness per se Eps-1region in wheat, rice, and Brachypodium. Funct. Integr. Genomics. 2010; 10: 293–306. DOI:10.1007/s10142-009-0146-7.

Youssefian S, Kirby EJM, Gale MD. Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crops Res. 1992; 28: 191–210. DOI:10.1016/0378-4290(92)90040-G.

Flintham JE, Borner A, Worland AJ, Gale MD. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J. Agr. Sci. 1997; 128: 11–25. DOI:10.1017/s0021859696003942.

Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W,Griffiths S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J. Exp. Bot. 2012; 63: 4419–4436. DOI:10.1093/jxb/ers138.

Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, Gasperini D, Griffiths S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Res. 2016; 191: 150–160. DOI:10.1016/j.fcr.2016.02.026.

Zhang B, Liu X, Xu WN, Chang JZ, Li A, Mao XG, Jing R. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci. Rep. 2015; 5: 13. DOI:10.1038/srep12211.

Li J, Wang Q, Wei H, Hu X, Yang W. SSR Mapping for locus conferring on the triple-spikelet trait of the Tibetan triple spikelet wheat (Triticum aestivum L. concv. tripletum). Triticeae Genomics. Genet. 2011; 2(1): 1–6.

Aliyeva AJ, Aminov NKh. Inheritance of the branching in hybrid populations among tetraploid wheat species and the new branched spike line 166-Schakheli. http://link.springer.com/journal/10722">Genetic Resources and Crop Evolution. 2011; 58(http://link.springer.com/journal/10722/58/5/page/1">5): 621–628.

Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 1999; 98: 977. DOI:10.1007/s001220051158.

Amagai LY, Martinek P, Watanabe N, Kuboyama T. Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum. Genet. Resour. Crop. Evol.2014; 61: 465. DOI.org/10.1007/s10722-013-0050-9.

Millet E.Genetic control of heading date and spikelet number in common wheat (Triticum aestivumL.) line ‘Noa’. Theor Appl Genet. 1986; 72: 105–107. DOI:10.1007/BF00261463.

Peng ZS, Yen C, Yang JL. Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica. 1998; 103: 109–114.

Aybeniz JA, Naib KA. Inheritance of the branching in hybrid populations among tetraploid wheat species and the new branched spike line 166-Schakheli. Genet Resour Crop Ev. 2011; 58: 621–628.

Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA. 2007; 104: 1424–1429.

Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M. Intermedium-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene Teosinte branched 1. Nat Genet. 2011; 43: 169–172. DOI:10.1038/ng.745.

Otsuga D, De Guzman B, Prigge MJ, Drews GN, Clark SE. Revoluta regulates meristem initiation at lateral positions. Plant J. 2001; 25: 223–236.

Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K. Molecular analysis of the lateral suppressor gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 2003; 17: 1175–1187.

Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis regulator of axillary meristems1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell. 2006; 18: 598–611.

Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF. The role of barren stalk1 in the architecture of maize. Nature. 2004; 432: 630–635.

Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D. Control of tillering in rice. Nature. 2003; 422: 618–621.

Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H. LAX and SPA: Major regulators of shoot branching in rice. Proc. Natl. Acad. Sci. USA. 2003; 100: 11765–11770.

Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol. 2009; 71: 265–76. DOI:10.1007/s11103-009-9522-x.

Beveridge CA, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opinion in Plant Biol. 2010; 13: 34–39.

Alieva ADzh. Source of a new type of spike branching in hard wheats. Russian Agri Sci. 2009; 35: 144–146.

Alieva AJ, Aminov NKh. Influence of D Genome of wheat on expression of novel type spike. Russian Agri Sci. 2013; 49:1119–1126.

##submission.downloads##

Опубліковано

2018-07-30

Номер

Розділ

МЕТОДИ І РЕЗУЛЬТАТИ СЕЛЕКЦІЇ