Проблеми селекції кукурудзи на фоні кліматичних змін
DOI:
https://doi.org/10.30835/2413-7510.2024.306977Ключові слова:
кліматичні умови, сільське господарство, кукурудза, сорт, гібридАнотація
Реферат: Погодні аномалії, зумовлені кліматичними змінами, негативно впливають на процеси росту та розвитку сільськогосподарських культур і, таким чином, знижують продуктивність сільського господарства в цілому. Такі процеси являють загрозу продовольству та національній безпеці. У зв’язку з перспективою розширення посівних площ під кукурудзою, зумовленою зміною кліматичних умов в світі та в країні, слід звернути особливу увагу на розробку різних напрямків селекції з урахуванням екологічної адаптації сортів та гібридів до природних чинників. Скринінг дикорослих зразків, місцевих сортів і популяцій мутантних рослин для виявлення перспективних ознак і донорів може мати вирішальне значення для селекційних підходів підвищення стійкості культур до теплового стресу. Крім того, ідентифікацію і картографування QTL(ів) за допомогою молекулярних маркерів можна використовувати для виявлення основного/мінорного гена(ів), що сприяє стійкості до теплового стресу.
Посилання
Kogan, F. (2022). Global Warming Impacts on Earth Systems. In: Remote Sensing Land Surface Changes. Springer, Cham. doi.org/10.1007/978-3-030-96810-6_2
Beniston, M., & Tol, R. S. (1998). The potential impacts of climate change on Europe. Energy & environment, 9(4), 365-381. Beniston, M., & Tol, R. S. (1998). The potential impacts of climate change on Europe. Energy & environment, 9(4), 365-381. doi.org/10.1177/0958305X9800900403
Parry, M. L., Carter, T. R., & Konijn, N. T. (Eds.). (2013). The impact of climatic variations on agriculture: assessment in cool temperate and cold regions. V. 1. Springer Science & Business Media.
NOAA 2020. Climate. Global Temperature. https://www.climate.gov/
Anstalt, S. V. (2013). Food and agriculture organization of the United Nations.
Abbas, G., Ahmed, M., Fatima, Z., Hussain, S., Kheir, A. M., Ercişli, S., & Ahmad, S. (2023). Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agricultural and Forest Meteorology, 341, 109674. doi.org/10.1016/j.agrformet.2023.109674
Ahmad, I., Ahmad, B., Boote, K., & Hoogenboom, G. (2020). Adaptation strategies for maize production under climate change for semi-arid environments. European Journal of Agronomy, 115, 126040. doi.org/10.1016/j.eja.2020.126040
Abendroth, L. J., Miguez, F. E., Castellano, M. J., Carter, P. R., Messina, C. D., Dixon, P. M., & Hatfield, J. L. (2021). Lengthening of maize maturity time is not a widespread climate change adaptation strategy in the US Midwest. Global Change Biology, 27(11), 2426-2440. doi.org/10.1111/gcb.15565
DeFries, R., Mondal, P., Singh, D., Agrawal, I., Fanzo, J., Remans, R., & Wood, S. (2016). Synergies and trade-offs for sustainable agriculture: Nutritional yields and climate-resilience for cereal crops in Central India. Global Food Security, 11, 44-53., doi.org/10.1016/j.gfs.2016.07.001
Untenecker, J., Tiemeyer, B., Freibauer, A., Laggner, A., & Luterbacher, J. (2017). Tracking changes in the land use, management and drainage status of organic soils as indicators of the effectiveness of mitigation strategies for climate change. Ecological indicators, 72, 459-472. doi.org/10.1016/j.ecolind.2016.08.004
Pereira, L., & Posen, I. D. (2020). Lifecycle greenhouse gas emissions from electricity in the province of Ontario at different temporal resolutions. Journal of cleaner production, 270, 122514. doi.org/10.1016/j.jclepro.2020.122514
Aggarwal, P., Vyas, S., Thornton, P., & Campbell, B. M. (2019). How much does climate change add to the challenge of feeding the planet this century. Environmental Research Letters, 14(4), 043001. doi:10.1088/1748-9326/aafa3e
Yang, B., He, M., Shishov, V., Tychkov, I., Vaganov, E., Rossi, S., ... & Grießinger, J. (2017). New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences, 114(27), 6966-6971. doi.org/10.1073/pnas.1616608114
Zampieri, M., Ceglar, A., Dentener, F., Dosio, A., Naumann, G., Van Den Berg, M., & Toreti, A. (2019). When will current climate extremes affecting maize production become the norm?. Earth's Future, 7(2), 113-122. doi.org/10.1029/2018EF000995
Zampieri, M., Toreti, A., Ceglar, A., Naumann, G., Turco, M., & Tebaldi, C. (2020). Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Regional Environmental Change, 20, 1-9. doi.org/10.1007/s10113-020-01622-9
Neset, T. S., Wiréhn, L., Opach, T., Glaas, E., & Linnér, B. O. (2019). Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture. Ecological Indicators, 105, 571-580. doi:10.1016/j.ecolind.2018.05.042
Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., & Andrews, T. (2020). Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. Journal of Climate, 33(18), 7755-7775. doi:10.1175/JCLI-D-19-1011.1
Hanjra, MA, & Qureshi, ME (2010). Global water crisis and future food security в нынешнем сезоне. Food policy , 35 (5), 365-377.
Poppy, G. M., Jepson, P. C., Pickett, J. A., & Birkett, M. A. (2014). Achieving food and environmental security: new approaches to close the gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639), 20120272. doi.org/10.1098/rstb.2012.0272
Fanzo, J., Davis, C., McLaren, R., & Choufani, J. (2018). The effect of climate change across food systems: Implications for nutrition outcomes. Global food security, 18, 12-19 doi:10.1016/j.gfs.2018.06.001
Cox, P. M., Huntingford, C., & Williamson, M. S. (2018). Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553(7688), 319-322. doi:10.1038/nature25450
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., ... & Zhang, L. (2020). North Atlantic climate far more predictable than models imply. Nature, 583(7818), 796-800. doi.org/10.1038/s41586-020-2525-0
Abd-Elmabod, S. K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., Phillips, J. D., Jones, L., ... & de la Rosa, D. (2020). Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma, 374, 114453.
doi:10.1016/j.geoderma.2020.114453
Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610-614.
Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard, R. (2018). Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1-14. doi.org/10.1016/j.agrformet.2018.01.032
Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in natural Science, 19(12), 1665-1674. doi.org/10.1016/j.pnsc.2009.08.001
Hondebrink, M. A., Cammeraat, L. H., & Cerdà, A. (2017). The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation. Science of the total environment, 581, 153-160. doi.org/10.1016/j.scitotenv.2016.12.087
Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & Melesse, A. M. (2019). Land use and land cover dynamics in the Keleta watershed, Awash River basin, Ethiopia. Environmental Hazards, 18(3), 246-265. doi.org/10.1080/17477891.2018.1561407
Jarecki, M., Grant, B., Smith, W., Deen, B., Drury, C., VanderZaag, A., ... & Wagner-Riddle, C. (2018). Long-term trends in corn yields and soil carbon under diversified crop rotations. Journal of environmental quality, 47(4), 635-643. doi: 10.2134/jeq2017.08.0317
Jourgholami, M., Ghassemi, T., & Labelle, E. R. (2019). Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecological indicators, 101, 102-110. doi.org/10.1016/j.ecolind.2019.01.009
Meyer, R. S., Cullen, B. R., Whetton, P. H., Robertson, F. A., & Eckard, R. J. (2018). Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia. Agricultural Systems, 167, 34-46. doi.org/10.1016/j.agsy.2018.08.010
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., ... & Zhang, M. (2011). The community climate system model version 4. Journal of climate, 24(19), 4973-4991. doi.org/10.1175/2011JCLI4083.1
Abd-Elmabod, S. K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., Phillips, J. D., Jones, L., ... & de la Rosa, D. (2020). Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma, 374, 114453. doi.org/10.1016/j.geoderma.2020.114453
Juhos, K., Czigány, S., Madarász, B., & Ladányi, M. (2019). Interpretation of soil quality indicators for land suitability assessment–A multivariate approach for Central European arable soils. Ecological Indicators, 99, 261-272. doi.org/10.1016/j.ecolind.2018.11.063
Akbari, M., Alamdarlo, H. N., & Mosavi, S. H. (2020). The effects of climate change and groundwater salinity on farmers’ income risk. Ecological Indicators, 110, 105893. doi.org/10.1016/j.ecolind.2019.105893
Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13(8), 1737-1747. doi.org/10.1111/j.1365-2486.2007.01374.x
Fahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., Amanullah, ... & Huang, J. (2016). Exogenously applied plant growth regulators affect heat-stressed rice pollens. Journal of agronomy and crop science, 202(2), 139-150. doi.org/10.1111/jac.12148
Hou, P., Liu, Y., Liu, W., Yang, H., Xie, R., Wang, K., ... & Li, S. (2021). Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation and Recycling, 174, 105811. doi.org/10.1016/j.resconrec.2021.105811
Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G., & Livermore, M. (1999). Climate change and world food security: a new assessment. Global environmental change, 9, S51-S67. doi.org/10.1016/S0959-3780(99)00018-7
Rivero R. M., Mittler R., Blumwald E. та ін. Developing climate-resilient crops: improving plant tolerance to stress combination. The Plant Journal. Issue 109, No 2. P. 373–389. doi:10.1111/tpj.15483.
Senguttuvel P., Jaldhani V., Raju N. S. et al. Breeding rice for heat tolerance and climate change scenario; possibilities and way forward. A review. Archives of Agronomy and Soil Science. Vol. 68, Issue 1. P. 115–132. doi:10.1080/03650340.2020.1826041.
Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1447–1466, doi:10.1017/CBO9781107415324.031.
Dhankher O. P., Foyer C. H. Climate resilient crops for improving global food security and safety. Plant, Cell & Environment. Issue 41, No 5. P. 877–884. doi:10.1111/pce.13207
Rivero R. M., Mittler R., Blumwald E. та ін. Developing climate-resilient crops: improving plant tolerance to stress combination. The Plant Journal. Issue 109, No 2. P. 373–389. doi:10.1111/tpj.15483
Molina-Romero, D., Baez, A., Quintero-Hernández, V., Castañeda-Lucio, M., Fuentes-Ramírez, L. E., Bustillos-Cristales, M. D. R., ... & Muñoz-Rojas, J. (2017). Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PloS one, 12(11), e0187913. doi: 10.1371/journal.pone.0187913
Lozano-García, B., Muñoz-Rojas, M., & Parras-Alcántara, L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249-1259. doi.org/10.1016/j.scitotenv.2016.11.111
Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: a case study in Northern Egypt. Agriculture, ecosystems & environment, 238, 142-152. doi.org/10.1016/j.agee.2016.09.001
Dmytrenko, V. P. Weather, climate and harvest of field crops. Kyiv: Nika-Tsenter (2010). [in Ukrainian]
Hrebin V.V. Current water regime of rivers in Ukraine (landscape and hydrological analysis) / V.V. Grebin. - K.: Nika-Tsenter, 2010. [in Ukrainian]
Climate of Ukraine / Ed. by V. M. Lipinskyi, V. A. Diachuk, V. M. Babichenko. — K.: Vydavnytstvo Raievskoho, 2003. — 343 p. [in Ukrainian]
Tararyko O. H., Syrotenko O. V., Ilienko T. V., Kuchma T. L., Voskresenska O. M. Assessment of the impact of climate changes on the productivity of grain crops and their forecasting based on satellite data. Visnyk Ahrarnoi Nauky. 2013. – No. 10. – P. 10 – 16. [in Ukrainian]
Kapustian M. V., Chernobai L. N., Kuzmishina N. V. Genetic value of self-pollinated corn lines depending on the pedigree. Life sciences in the dialogue of generations: connections between universities, academia and business community: аbstract book, the National Conference with International Participation. Chisinau, Republic of Moldova, 2019. P. 35–36.
M. El.M. El-Badawy, (2013). Heterosis and Combining Ability in Maize using Diallel Crosses among Seven New Inbred Lines. Asian Journal of Crop Science, 5: P. 1-13. doi: 10.3923/ajcs.2013.1.13.
Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., & Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42-55. doi.org/10.1016/j.agrformet.2017.07.012
Adeagbo, O. A., Ojo, T. O., & Adetoro, A. A. (2021). Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-west, Nigeria. Heliyon, 7(2). doi.org/10.1016/j.heliyon.2021.e06231
Ahmad, I., Ahmad, B., Boote, K., & Hoogenboom, G. (2020). Adaptation strategies for maize production under climate change for semi-arid environments. European Journal of Agronomy, 115, 126040. doi.org/10.1016/j.eja.2020.126040
Alam, M. A., Seetharam, K., Zaidi, P. H., Dinesh, A., Vinayan, M. T., & Nath, U. K. (2017). Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research, 204, 110-119. doi.org/10.1016/j.fcr.2017.01.006
Fonseca, A. E., & Westgate, M. E. (2005). Relationship between desiccation and viability of maize pollen. Field crops research, 94(2-3), 114-125. doi.org/10.1016/j.fcr.2004.12.001
Slingo, J. M., Challinor, A. J., Hoskins, B. J., & Wheeler, T. R. (2005). Introduction: food crops in a changing climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 1983-1989. doi:10.1098/rstb.2005.1755
Nahid, N., Lashgarara, F., Farajolah Hosseini, S. J., Mirdamadi, S. M., & Rezaei-Moghaddam, K. (2021). Determining the resilience of rural households to food insecurity during drought conditions in Fars province, Iran. Sustainability, 13(15), 8384. doi:10.3390/su13158384
Dong, X., Guan, L., Zhang, P., Liu, X., Li, S., Fu, Z., ... & Yang, H. (2021). Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agricultural and Forest Meteorology, 303, 108378. doi.org/10.1016/j.agrformet.2021.108378
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., ... & Frieler, K. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature communications, 8(1), 13931. doi: 10.1038/ncomms13931
Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011. doi: 10.1088/1748-9326/9/3/034011
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., ... & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences, 114(35), 9326-9331. doi.org/10.1073/pnas.1701762114
Wang, C. (2019). Three-ocean interactions and climate variability: A review and perspective. Climate Dynamics, 53(7), 5119-5136.
Lohani, N., Singh, M. B., & Bhalla, P. L. (2022). Short-term heat stress during flowering results in a decline in Canola seed productivity. Journal of Agronomy and Crop Science, 208(4), 486-496.doi.org/10.1111/jac.12534
Gliessman, S., & Tittonell, P. (2015). Agroecology for food security and nutrition. Agroecology and Sustainable Food Systems, 39(2), 131-133.
Murray, V., & Ebi, K. L. (2012). IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). J Epidemiol Community Health, 66(9), 759-760
Gourdji, S. M., Sibley, A. M., & Lobell, D. B. (2013). Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 8(2), 024041. doi 10.1088/1748-9326/8/2/024041
Stone, D. A., Allen, M. R., Stott, P. A., Pall, P., Min, S. K., Nozawa, T., & Yukimoto, S. (2009). The detection and attribution of human influence on climate. Annual Review of Environment and Resources, 34, 1-16.
Ordonez, A., Williams, J. W., & Svenning, J. C. (2016). Mapping climatic mechanisms likely to favour the emergence of novel communities. Nature Climate Change, 6(12), 1104-1109.
Sanchez Gómez, R. (2014). Gestión y psicologia en empresas y organizaciones. doi:10.1038/nclimate3127
Schoper, J. B., Lambert, R. J., Vasilas, B. L., & Westgate, M. E. (1987). Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant physiology, 83(1), 121-125. doi: 10.1104/pp.83.1.121
Edreira, J. R., Carpici, E. B., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. doi:10.1016/j.fcr.2011.04.015
Lizaso, J. I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J. A., Lorite, I. J., ... & Rodríguez, A. (2018). Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 216, 129-140. doi.org/10.1016/j.fcr.2017.11.013
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., ... & Santiago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706-717. doi.org/10.1111/geb.12296
Gourdji, SM, Sibley, AM, & Lobell, DB (2013). Global crop exposure to critical high temperatures in reproductive period: historical trends and future projections. Environmental Research Letters , 8 (2),024041. doi 10.1088/1748-9326/8/2/024041
Lohani, N., Singh, M. B., & Bhalla, P. L. (2020). High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71(2), 555-568. doi.org/10.1093/jxb/erz426
Cicchino, M., Edreira, J. R., Uribelarrea, M., & Otegui, M. E. (2010). Heat stress in field‐grown maize: Response of physiological determinants of grain yield. Crop science, 50(4), 1438-1448. doi.org/10.2135/cropsci2009.10.0574
Boyer, J. S., & Westgate, M. E. (2004). Grain yields with limited water. Journal of experimental botany, 55(407), 2385-2394. doi.org/10.1093/jxb/erh219
Lewis, R. S., & Goodman, M. M. (2003). Incorporation of tropical maize germplasm into inbred lines derived from temperate× temperate-adapted tropical line crosses: agronomic and molecular assessment. Theoretical and Applied Genetics, 107, 798-805. doi:10.1007/s00122-003-1341-x
Gifford, R. M., Thorne, J. H., Hitz, W. D., & Giaquinta, R. T. (1984). Crop productivity and photoassimilate partitioning. Science, 225(4664), 801-808. doi: 10.1126/science.225.4664.801
Hall A. E. Breeding Cowpea for Future Climates. Crop Adaptation to Climate Change. John Wiley & Sons, Ltd, 2011. P. 340–355. doi:10.1002/9780470960929.ch24.
Commuri P. D., Jones R. J. High Temperatures during Endosperm Cell Division in Maize: A Genotypic Comparison under In Vitro and Field Conditions. Crop Science. Issue 41, No 4. P. 1122–1130. doi:10.2135/cropsci2001.4141122x.
Karim MD. A., Fracheboud Y., Stamp P. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum. Issue 105, No 4. P. 685–693. doi:10.1034/j.1399-3054.1999.105413.x.
Madhumal Thayil V., Zaidi P. H., Seetharam K. et al. Genotype-by-Environment Interaction Effects under Heat Stress in Tropical Maize. Agronomy. Issue 10, No 12. P. 1998. doi:10.3390/agronomy10121998.
Chen J., Xu W., Velten J. et al. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation. Issue 67, No 5. P. 354–364. doi:10.2489/jswc.67.5.354.
Alam M. A., Seetharam K., Zaidi P. H. et al. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research. Issue 204, 03.2017. P. 110–119. doi:10.1016/j.fcr.2017.01.006.
Noor J. J., Vinayan M. T., Umar S. et al. Morpho-physiological traits associated with heat stress tolerance in tropical maize (Zea mays L.) at reproductive stage. Australian Journal of Crop Science. Vol. 13, Issue (04) 2019. P. 536–545. doi:10.21475/ajcs.19.13.04.p1448.
Feng H., Guo Z., Yang W. et al. An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice. Scientific Reports. Issue 7, No 1. P. 4401. doi:10.1038/s41598-017-04668-8.
Song P., Wang J., Guo X. et al. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. The Crop Journal. Vol. 9, Issue 3. P. 633–645. doi:10.1016/j.cj.2021.03.015.
Joshi J., Hasnain G., Logue T. et al. A Core Metabolome Response of Maize Leaves Subjected to Long-Duration Abiotic Stresses. Metabolites. Issue 11, No 11. P. 797. doi:10.3390/metabo11110797.
Frova C., Sari-Gorla M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Molecular and General Genetics. Issue 245, No 4. P. 424–430. doi:10.1007/BF00302254.
Parrado, J. D., Canteros, F. H., & Lorea, R. (2021). Heat stress in maize: Characterization and phenotypic plasticity. Maydica, 65(3), 11–16.
Inghelandt D. V., Frey F. P., Ries D. et al. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Scientific Reports. Issue 9, No 1. P. 14418. doi:10.1038/s41598-019-50853-2.
McNellie J. P., Chen J., Li X. et al. Genetic Mapping of Foliar and Tassel Heat Stress Tolerance in Maize. Crop Science. Issue 58, No 6. P. 2484–2493. doi:10.2135/cropsci2018.05.0291.
Lutsyk A.P., Kozhuhova N.E., Syvolap Yu.M. (2008) Genes encoding corn heat shock proteins: structure and polymorphism. Faktory Experymentalnoi Evoliutsii Orhanizmiv: Collection of scientific papers. Vol. 4. P. 138-142. [in Ukrainian]
El-Sappah A. H., Rather S. A., Wani S. H. et al. Heat Stress-Mediated Constraints in Maize (Zea mays) Production: Challenges and Solutions. Frontiers in Plant Science. Vol. 13, 2022.
Nelimor C., Badu-Apraku B., Tetteh A. Y. та ін. Assessment of Genetic Diversity for Drought, Heat and Combined Drought and Heat Stress Tolerance in Early Maturing Maize Landraces. Plants. Issue 8, No 11. P. 518. doi:10.3390/plants8110518.
Würschum T., Weiß T. M., Renner J. et al. High-resolution association mapping with libraries of immortalized lines from ancestral landraces. Theoretical and Applied Genetics. Issue 135, No 1. P. 243–256. doi:10.1007/s00122-021-03963-3.
Begna T. Effects of crop evolution under domestication and narrowing genetic bases of crop species. Open Journal of Plant Science. Issue 6, No 1. P. 049–054. doi:10.17352/ojps.000032.
Ruswandi D., Anggia E. P., Canama A. O. et al. Mutation breeding of maize for anticipating global climate change in Indonesia. Asian Journal of Agricultural Research. Vol. 8, Issue 5. P. 234–247.
Greene T. W., Hannah L. C. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions. Proceedings of the National Academy of Sciences. Vol. 95, Issue 22. P. 13342–13347. doi:10.1073/pnas.95.22.13342.
Lin Y.-X., Jiang H.-Y., Chu Z.-X. et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. Vol. 12, Issue 1. P. 76. doi:10.1186/1471-2164-12-76.
Casaretto J. A., El-Kereamy A., Zeng B. et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics. Vol. 17, Issue 1. P. 312. doi:10.1186/s12864-016-2659-5
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2024 N. M. Muzafarov, S. H. Ponurenko, I. P. Barsukov, O. V. Sikalova, М. В. Kapustian
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
При розміщенні текстів статей в електронних ресурсах авторські права зберігаються за автором друкованої публікації.
Автор може не погоджуватися з правками рецензентів і редакції, мотивуючи при цьому свою точку зору.
Автор може вимагати від редакції пояснень або змін у випадку виявлення істотних помилок у його статті.
Автор може використовувати матеріали, опубліковані в журналі «Селекція і насінництво» у своїх роботах, обов’язково посилаючись на наш журнал.