AMMI and GGE Biplot Analysis of Genotype-Environment Interaction in Environmental Trials of Pea Cultivars
DOI:
https://doi.org/10.30835/2413-7510.2025.333727Keywords:
environmental trials, pea, AMMI, GGE biplot, cultivars, yieldAbstract
Results of AMMI and GGE biplot analysis summarizing data of environmental trials of pea cultivars are presented. The results of these methods were not identical and indicate the importance of each of these algorithms. Thus, the distribution of pea accessions by ranks (ASV) in the AMMI model placed cv. ‘Haiduk’ in the first position, but according to the results of the GGE biplot analysis, cv. ‘Oplot’ was the best ("ideal") genotype. Graphical visualization of results marking megaenvironments and cultivars that are the best in these environments is additional information to adjust breeding programs and to create adaptable pea cultivars for different growing zones. A separate advantage of GGE biplot is that it is able to assess the informativeness of test environments. In our study, not only the trial locations (Odesa State Experimental Station [Odeska Oblast], Ustymivka Experimental Station [Poltavska Oblast] and Yuriev Plant Production Institute [Kharkivska Oblast]) but also each year of trials at each location differed. Thus, AMMI and GGE biplot analysis, which process data of environmental trials of pea, do not exclude each other, but on the contrary, provide more detailed and complete information.
References
Eberhart S. A., Russell W. A. Stability parameters for comparing varieties. Crop Sci. 1966. Vol. 6(1). P. 36–40.
Yan W., Pageau D., Frégeau‐Reid J., Durand J. Assessing the representativeness and repeatability of test locations for genotype evaluation. Crop Sci. 2011. Vol. 51(4). P. 1603-1610. 10.2135/cropsci2011.01.0016
Yang X., Soliman A. A., Hu C., Yang F., Lv M., Yu H., Wang Y., Zheng A., Dai Z., Li Q., Yang Y., Yang J., Zhang Y., Niu W., Wang L., He Y. Yield Adaptability and Stability in Field Pea Genotypes Using AMMI, GGE, and GYT Biplot Analyses. Agriculture. 2023. Vol. 13. 1962. https://doi.org/10.3390/agriculture13101962
Ansarifard I., Mostafavi K., Khosroshahli M., Bihamta Reza M., Ramshini H. A study on genotype–environment interaction based on GGE biplot graphical method in sunflower genotypes (Helianthus annuus L.). Food Sci. Nutr. 2020. 00:1–8. https://doi.org/10.1002/fsn3.1610.
Yihunie T. A., Gesesse C. A. GGE Biplot Analysis of Genotype by Environment Interaction in Field Pea (Pisum sativum L.) Genotypes in Northwestern Ethiopia. J. Crop Sci. Biotechnol. 2018. Vol. 21. P. 67–74. https://doi.org/10.1007/s12892-017-0099-0
Girgel U., Cokkizgin A. GGE BIPLOT analysis in wild (Pisum sativum L. subsp. elatius and subsp. sativum) and cultivated pea (Pisum sativum L.) genotypes in Northern and Southern Turkey. Applied Ecology and Environmental Research. 2020. Vol. 18(1). P. 1237–1251. https://doi.org/10.15666/aeer/1801_12371251
Moraes Cunha Gonçalves G., Ferreira-Gomes R. L., Almeida Lopes Â. C., Melo Jorge Vieira P. F. Adaptability and yield stability of soybean genotypes by REML/BLUP and GGE Biplot. Crop Breeding and Applied Biotechnology. 2020. Vol. 20(2). e282920217. http://dx.doi.org/10.1590/1984-70332020v20n2a33
Solonechnyi P. N. AMMI and GGE biplot analysis of genotype-environment interaction of spring barley lines. Vavilovskiy Zhurnal Genetiki i Selektsii. 2017. Vol. 21(6). P. 657–662. https://doi.org/10.18699/VJ17.283 [in Russian]
Bezugla O. M., Kobyzeva L. N., Vus N. M., Solonechnyi P. M. Environmental trials of a model population of Phaseolus vulgaris L. in contrast climates. Plant Breeding and Seed Production. 2020. Vol. 118. P. 8–21. https://doi.org/10.30835/2413-7510.2020.222257
Das A., Parihar A. K., Saxena D., Singh D., Singha K. D., Kushwaha K. P. S., Chand R., Bal R. S., Chandra S., Gupta S. Deciphering genotype-by- environment interaction for targeting test environments and rust resistant genotypes in field pea (Pisum sativum L.). Front. Plant Sci. 2019. Vol. 10. 825. https://doi.org/10.3389/fpls.2019.00825
Osei O, Abaidoo RC, Opoku A, Rouws JRC, Boddey RM, Ahiabor BDK, Rouws LFM. Native bradyrhizobium strains from ghana can enhance grain yields of field-grown cowpea and groundnut. Front. Agron. 2020, 2:2. https://doi.org/10.3389/fagro.2020.00002.
Methodology of state variety trials of agricultural crops. K., 2000. Issue 1. 100 p. [in Ukrainian]
Methodology of state variety trials of agricultural crops. K., 2001. Issue 2. 68 p. [in Ukrainian]
GGE biplot. 2011. URL:www.ggebiplot.com
Purchase J. L., Hatting H., van Deventer C. S. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African J. Plant Soil. 2000. Vol. 17(3). P. 101–107. https://doi.org/10.1080/02571862.2000.10634878
Amelework A. B., Bairu M. W., Marx R., Laing M., Venter S. L. Genotype × environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants. 2023. Vol. 12(13). 2490. https://doi.org/10.3390/plants12132490
Mullualem D., Tsega A., Mengie T., Fentie D., Kassa Z., Fassil A., Wondaferew D., Gelaw T. A., Astatkie T. Genotype-by-environment interaction and stability analysis of grain yield of bread wheat (Triticum aestivum L.) genotypes using AMMI and GGE biplot analyses, Heliyon. 2024. Vol. 10(12). e32918. https://doi.org/10.1016/j.heliyon.2024.e32918
Farshadfar E. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat Pakistan J. Biol. Sci. 2008. Vol. 11(14). P. 1791-1796. https://doi.org/10.3923/pjbs.2008.1791.1796
Pour-Aboughadareh A., Khalili M., Poczai P., Olivoto T. Stability indices to deciphering the genotype-by-environment interaction (GEI) effect: an applicable review for use in plant breeding programs Plants. 2022. Vol. 11 (3). 414. https://doi.org/10.3390/plants11030414
Goa Y., Mohammed H., Worku W., Urage E. Genotype by environment interaction and yield stability of cowpea (Vigna unguiculata (L.) Walp.) genotypes in moisture limited areas of Southern Ethiopia Heliyon. 2022. Vol. 8(3). e09013. https://doi.org/10.1016/j.heliyon.2022.e09013
Achenef G., Yilma G., Yimam K. Assessment of phenotypic stability and adaptability of elite field pea (Pisum sativum L) genotypes in Arsi zone. Ethiopia J. Agric. Food Res. 2024. Vol. 18(1). 101427. https://doi.org/10.1016/j.jafr.2024.101427
Daba S. D., Kiszonas A. M., McGee R. J. Selecting high-performing and stable pea genotypes in multi-environmental trial (MET): applying AMMI, GGE-biplot, and BLUP procedures. Plants. 2023. Vol. 12. 2343. https://doi.org/10.3390/plants12122343
Haile GA, Tesfaye D. Response of field pea (Pisum sativum L.) genotypes for grain yield in a multi-environment trial in Southeastern Ethiopia. Heliyon. 2024. Vol. 10(15). e35233. https://doi.org/10.1016/j.heliyon.2024.e35233
Kebede G. Y., Eritro T. A., Gutu D. T. Genotypetimes environment interaction and stability analysis of advanced field pea (Pisum sativum L.) genotypes in Southeastern Ethiopia. Ecol. Genet. Genom. 2024. Vol. 33. 100302. https://doi.org/10.1016/j.egg.2024.100302Get
Rao P. J. M, Sandhyakishore N., Sandeep S., Neelima G., Rao P. M., Das D. M., Saritha A. Evaluation of performance and yield stability analysis based on AMMI and GGE-biplot in promising pigeonpea [Cajanus cajan (L.) Millspaugh] genotypes. Legum Res. 2022. Vol. 45(11). P. 1414–1420. https://doi.org/10.18805/LR-4299
Pourmohammad A., Vaezi B., Jozeyan A., Hassanpouraghdam M. B. GGE biplot analysis of genotype× environment interaction and forage yield stability in grass pea (Lathyrus sativus) genotypes. Genetika. 2024. Vol. 56(1). P. 75–87. https://doi.org/10.2298/GENSR2401075P
Wondaferew D., Mullualem D., Bitewlgn W., Kassa Z. Cultivating sustainable futures: multi-environment evaluation and seed yield stability of faba bean (Vicia faba L.) genotypes by using different stability parameters in Ethiopia. BMC Plant Biol. 2024. Vol. 24(1). 1108. https://doi.org/10.1186/s12870-024-05829-4
Sharma A., Yadav R., Sheoran R., Kumar P. Evaluation of genotype × environment interactions for seed yield in field pea (Pisum sativum L.) genotypes using multivariate analysis model. Euphytica 2025, 221:58. https://doi.org/10.1007/s10681-025-03507-6
Yan W., Tinker N.A. Biplot analysis of multi-environment trial data: principles and applications Can. J. Plant Sci. 2006.Vol. 86(3). :P. 623-645. https://doi.org/10.4141/P05-169,
Yan W., Holland J. B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica. 2010. Vol. 171 (3). P. 355-369. https://doi.org/10.1007/s10681-009-0030-5
Frutos E., Galindo M. P., Leiva V. An interactive biplot implementation in R for modeling genotype-by-environment interaction Stoch. Environ. Res. Risk Assess. 2014. Vol. 28(7). P. 1629-1641. https://doi.org/10.1007/s00477-013-0821-z
Downloads
Published
Issue
Section
License
Copyright (c) 2025 A. O. Vasylenko, V. I. Sichkar, L. M. Shevchenko, N. O. Vus, P. M. Solonechnyi, S. I. Silenko, Р. В. Solomonov, V. I. Serdyuk, A. V. Glyantsev

This work is licensed under a Creative Commons Attribution 4.0 International License.
When placing the text in electronic resources, the copyright is reserved by the author of a publication.
Authors may not agree with referee’s(s’) comments and remarks of the Editorial Board, rationalizing their point of view.
Authors may require clarification from or the Editorial Board or changes in the event of significant errors in their article.
Authors can use materials published in the journal Selection and Seed Industry in their work, mandatorily referring to our journal.