Урожайность и стабильность мироновских сортов ячменя озимого
DOI:
https://doi.org/10.30835/2413-7510.2018.134358Ключевые слова:
ячмень озимый, сорт, урожайность, стабильность, взаимодействие генотип-среда, показатель адаптивности, AMMI, GGE biplotАннотация
Цель и задачи исследований. Сравнительная оценка урожайности и стабильности сортов ячменя озимого Мироновского института пшеницы имени В.Н. Ремеслa НААН, внесенных в Госреестр Украины в 1987–2017 гг.
Материалы и методы. Исследования проведены в Мироновском институте пшеницы имени В. Н. Ремесла НААН в 2012/13–2016/17 гг. в соответствии с общепринятыми методиками. Материал для исследований – 15 сортов ячменя озимого мироновской селекции, зарегистрированных в Украине за период 1987–2017 гг. Для характеристики взаимодействия генотип–среда и дифференциации сортов по урожайности и стабильности использовали ряд наиболее распространенных в отечественной и мировой практике методик: S.A. Eberhart, W.A. Russel (1966); G. Wricke (1962); C.S. Lin, M.R. Binns (1988); M. Huehn (1990); А.В. Кильчевский, Л.В. Хотылёва (1985); В.В. Хангильдин, Н.А. Литвиненко (1981); J.L. Purchase и др. (2000). Для графического анализа использовали AMMI и GGE biplot.
Обсуждение результатов. Погодные условия Лесостепи Украины существенно влияют на уровень проявления урожайности ячменя озимого. На это указывают как варьирование среднего значения урожайности в опыте по годам – от 6,53 т/га в 2014/15 г. до 3,16 т/га в 2016/17 г., так и процент вклада условий лет испытаний в общую дисперсию – 82,05%. Достоверные, но существенно ниже значение имели: генотип – 12,51%, взаимодействие генотип–среда – 5,45%. Варьирование урожайности сортов в пределах года было 1,20–2,25 т/га. В среднем за пять лет самое высокое значение урожайности отмечено у сорта МІП Ясон – 5,67 т/га, наиболее низкое– у сорта Бемір 2 – 3,95 т/га. По большинству показателей адаптивности лучшие значение имели сорта Паладін Миронівський и МІП Ясон. Первые две главные компоненты GGE biplot объясняли большую долю взаимодействия генотип–среда (86,92 %) по сравнению с AMMI моделью (76,33 %). По AMMI анализу максимальную стабильность в годы исследований имел Паладін Миронівський. Ранжированием по отношению к «идеальному» генотипу GGE biplot модели показана максимальная приближенность к нему сортов МІП Оскар, Паладін Миронівський, МІП Ясон. Немного уступали названным, но существенно превышали другие сорта Атлант Миронівський и МІП Гладіатор. Корреляционный анализ выявил сильную положительную связь средней урожайности (mean) как с максимальным (max) (r = 0,89), так и минимальным (min) (r = 0,81) ее уровнем. Сильную положительную корреляцию mean имела с параметрами СЦГi (r = 0,81), Hom (r = 0,79) и Sc (r = 0,88). Очень сильная отрицательная связь (r = -0,96) отмечена между mean и Pi. Для max сильная положительная связь выявлена только с показателем Sc (r = 0,73), сильная отрицательная – с Pi (r = -0,85). Min сильно коррелировала с Sc (r = 0,95), Hom (r = 0,82) и СЦГi (r = 0,81). Между отдельными показателями установлена связь от функциональной и очень сильной положительной σ²CAЗi и Кgi (r = 1,00), СЦГi и Hom (r = 1,00), σ²CAСi и bi (r = 0,98), Кgi и bi (r = 0,98), S2di и Wi (r = 0,93), Wi и Lgi (r = 0,97), Wi и ASV (r = 0,94), СЦГi и Sc (r = 0,93), Sc и Hom (r = 0,93), Si(1) и Si(2) (r = 0,90) до сильной отрицательной Sgi и СЦГi (r = -0,87), Sgi и Hom (r = -0,87), Pi и Sc (r = -0,78), Pi и Hom (r = -0,73), Pi и СЦГi (r = -0,75). Выявленные закономерности корреляции урожайности с показателями стабильности могут быть использованы для дальнейшей разработки теории и практики адаптивной селекции.
Выводы. Системная сравнительная оценка статистическими и графическими подходами свидетельствует, что внесенные в Госреестр Украины в 2014-2017 гг. сорта Паладін Миронівський Атлант Миронівський, МІП Ясон, МІП Оскар, МИП Гладіатор превосходят созданные на предыдущих этапах селекционной работы сорта как по продуктивному, так и адаптивному потенциалах. В то же время статистические показатели, визуализация AMMI и GGE biplot указывают, что выделенные сорта различаются по реакции на контрастные условия лет исследований. Таким образом, данные сорта в производственных условиях могут дополнять друг друга.
Библиографические ссылки
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: The challenge of feeding 9 billion people. Science. 2010; 327: 812–818.
Foley JA., Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM,Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S,Tilman D, Zaks DPM. Solutions for a cultivated planet. Nature. 2011; 478: 337–342.
Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 2011; 108: 20260–20264.
Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013; 8(6): e66428.doi:10.1371/journal.pone.0066428
Smith P, Gregory PJ. Climate change and sustainable food production. Proc. Nutr. Soc. 2013; 72 (1): 21–28.
Moore FC, Lobell DB. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA. 2015; 112 (9): 2670–2675.
Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science. 2008; 27: 377–412.
Li W-T, Liu C, Liu Y-X, Pu Z-E, Dai S-F, Wang J-R, Lan X-J, Zheng Y-L, Wei Y-M. Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica. 2013; 89: 31–49.
Dockter C, Hansson M. Improving barley culm robustness for secured crop yield in a changing climate. Journal of Experimental Botany. 2015; 66 (12): 3499–3509.
Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R. Barley: a translational model for adaptation to climate change. New Phytologist. 2015; 206:913–931.
Benkherbache N, Tondelli A, Djekoune A, Francia E, Pecchioni N, Hassous L, Stanca AM. Marker characterization of vernalization and low-temperature tolerance loci in barley genotypes adapted to semi-arid environments. Czech J. Genet. Plant Breed. 2016; 52 (4): 157–162.
Gilliham M, Able JA, Roy SJ. Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal. 2017; 90: 898–917.
http://www.fao.org/faostat/en/#data/QC
Laidig F, Piepho HP, Rentel D, Drobek T, Meyer U, HueskenA. Breeding progress, environmental variation and correlationof winter wheat yield and quality traits in German official varietytrials and onfarm during 1983–2014. Theor. Appl. Genet. 2017; 130: 223–245.
Laidig F, Piepho HP, Rentel D, Drobek T, Meyer U, HueskenA. Breeding progress, variation, and correlation of grain and qualitytraits in winter rye hybrid and population varieties and nationalon-farm progress in Germany over 26 years. Theor. Appl. Genet. 2017; 130: 981–998.
Peltonen-Sainio P, Jauhiainen L, Laurila IP. Cereal yield trendsin Northern European conditions: changes in yield potential andits realization. Field Crops Res. 2009; 110: 85–90.
Mackay IJ, Horwell A, Garner J, White J, McKee J, Philpott H. Reanalysis of the historical series of UK variety trials to quantifythe contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet. 2011; 122: 225–238.
Rijk B. van Ittersum M, Withagen J. Genetic progress in Dutch crop yields. Field Crops Res. 2013; 149: 262–268.
Lillemo M, Reitan L, Bjørnstad A. Increasing impact of plant breeding on barley yields in central Norway from 1946 to 2008. Plant Breeding. 2009; 129 (5): 484–490.
Psota V, Hartmann J, Sejkorova S, Louckova T, Vejrazka K. 50Years of progress in quality of malting barley grown in the CzechRepublic. J. Inst. Brew. 2009; 115: 279–291.
Maksimov RA, Kiselev YuA. Current problems of adaptive selection of barley in the Middle Ural.Permskiy agrarnyy vestnik. 2017; 3 (19): 91–95.
Laidig F, Piepho HP, Rentel D, Drobek T, Meyer U. Breeding progress, genotypic and environmental variationand correlation of quality traits in malting barley in Germanofficial variety trials between 1983 and 2015. Theor. Appl. Genet. 2017; 130: 2411–2429.
Grausgruber H, Bointer H, Tumpold R, Ruckenbauer P, Fishbeck G. Genetic improvement of agronomic and qualitative traits of spring barley. PlantBreeding. 2002; 121 (5): 411–416.
Condon F, Rasmusson DC, Schiefelbein E, Velasquez G, Smith KP. Effect of advanced cycle breeding on genetic gain andphenotypic diversity in barley breeding germplasm. Crop Science. 2009; 49: 1751–1761.
Mirosavljević M, Momčilović V, Pržulj N,Hristov N, Aćin V, Čanak P, DenčićS. The variation of agronomic traits associated with breeding progress in winter barley cultivars. Zemdirbyste-Agriculture. 2016; 103 (3): 267–272.
Ortiz R, Nurminiemi M, Madsen S, Rognli O, Bjornstad A. Genetic gains in Nordic spring barley breeding over sixty years. Euphytica. 2002; 126: 283–289.
Rajala A, Peltonen-Sainio P, Jalli M, Jauhiainen L. One century of Nordic barley breeding: nitrogen use efficiency, agronomic traits and genetic diversity. The Journal of Agricultural Science. 2017; 155 (4): 82–598.
Fekadu W, Zeleke H, Ayana A. Genetic improvement in grain yield potential andassociated traits of food barley (Hordeum vulgare L.) in Ethiopia. Ethiop. J. Appl. Sci. Technol. 2011; 2 (2): 43–60.
Kozachenko MR, Vasko NI, Naumov AG, Solonechny PN, Vazhenina OYe, Solonechnaya OV, Zimoglyad AV, Shevchenko AS. Spring barley varieties for the modern agricultural industry. Visnyk TsNZ APV Kharkivskoi oblasti. 2014; 17: 97–103.
Vazhenina OE.The promising spring barley varieties developed by Plant Production Institute nd. a V.Ya. Yuryev of NAAS. Visnyk TsNZ APV Kharkivskoi oblasti. 2013; 15: 22–29.
Kozachenko MR, Vasko NI, Naumov OH, Ivanova NV, Markova TYu, Sheliakina TA, Matviiets VH. Effectiveness of awnless spring barley breeding. Sel. Nasinn. 2011; 100: 37–45.
Vasko NI, Kozachenko MR, Naumov OG, Matviiets NM, Zviahintseva AM. Awnless spring barley variety Modern. Visnyk TsNZ APV Kharkivskoi oblasti. 2012; 13: 48–54.
Naumov OG, Kozachenko MR, Vasko NI, Solonechnii PM, Vazhenina OE. Waxy barley breeding. Sel. Nasinn. 2014; 105: 60–69.
Vasko NI, Kozachenko MR, Solonechnyi PM, Naumov OG. Original forms of spring barley bred by mutagenesis and hybridization. Henetychni Resursy Roslyn. 2013; 13: 50–58.
Kozachenko MR, Vasko NI, Solonechnіy PN, Naumov AG. New forms of spring barley creating by hybridization. Sel.Nasinn. 2014; 106: 42–51.
Linchevskyi AA. 95 years of barley breeding at Plant Breeding and Genetics Institute. Zbirnyk naukovykh prats SHI–NTsNS. 2012; 20 (60): 66–83.
Rybalka AI, Polyshchuk SS, Kyrdoglo EK, Morgun BV. Genetic and breeding criteria of hulless barley cultivars production for the food end-use. Fiziologiya i biokhimiya kulturnykh rasteniy. 2013; 45 (3): 187–205.
Hudzenko VM, Vasylkivskyi SP, Demydov OA, Polishchuk TP, Babiy OO. Spring barley breeding for increase in productive and adaptive capacities. Sel. Nasinn. 2017; 111: 51–61.
Honchar TM, Doroshchuk VO, Betsenko LB, Mareniuk OB. Effectiveness spring barley breeding. Visnyk ahrarnoуi nauky. 2013; Special issue: 42–43.
Vinyukov AA, Bondarevа OB, Korobova OМ. Ecological adaptability of new spring barley varieties to stress factors. Sel. Nasinn. 2016; 110: 29–35.
Sardak M.O. Naked barley varieties for production huskless grain in Ukraine. Professor Solomon Frankfurt (1866–1954) – an outstanding scientist agrobiologist, one of the most active organizers of academic science in Ukraine (devoted to 150-th anniversary of the birth). Proceedings of science and practice conference. Kyiv, November 18, 2016. K. 2016; 1: 87–88.
Lehkun IB. New winter barley varieties developed at PBGI–NCSCI. Zroshuvane zemlerobstvo. 2013; 60: 115–117.
Sheremet OM. The results of winter barley breeding at Plant breeding and genetics institute 1984–2007. Zb. nauk. prats SHI–NTsNS. 2008; 12 (52): 96–105.
Linchevskyi AA. Barley is the source of healthy life style for modern men. Visnyk Ahrarnoi Nauky. 2017; 12: 14–21.
Hudzenko VM, Vasylkivskyi SP. Breeding winter barley varieties adapted to modern environments of Forest-Steppe of Ukraine. Zbirnyk naukovykh prats Umanskoho NUS. 2017; 90 (1): 63–70.
Gudzenko VM, Vasylkivskyi SP. Main directions and tasks in winter barley breeding in Central Forest-Steppe of Ukraine. Novitni Ahrotekhnolohii. 2016; 1. http://plant.gov.ua/uk/2016-1-2.
Vazhenina OE. Ecological stability of spring barley varieties on productivity and the creation of avaluable source of material. Sel. Nasinn.2014; 106: 5–12.
Marukhnyak AYa. Evaluation of spring barley varieties adaptive ability. Vestnik Belorusskoy Gosudarstvennoy Selskokhozyaystvennoy Akademii. 2018; 1: 67–72.
Verma A, Singh J, Kumar V, Kharab AS, Singh GP. Nonparametric analysis in multienvironmental trials of feed barley genotypes. Int. J. Curr. Microbiol. App.Sci. 2017; 6 (6): 1201-1210.
Mirosavljević M, PržuljN, ČanakP. Analysis of new experimental barley genotype performance for grain yield using AMMI biplot. Selekcija i Semenarstvo. 2014; 20 (1): 27–36.
Mohammadi M, Karimizadeh R, Noorinia AA, Ghojogh H, Hosseinpour T, Khalilzadeh GR, Mehraban A, Roustaii M, Hosni MH. Analysis of yield stability in multi-environment trials of barley (Hordeum vulgar L.) genotypes using AMMI model. Curr. Opin. Agric. 2013; 2 (1): 20–24.
Verma RPS, Kharab AS, Singh J, Kumar V, Sharma I, Verma A. AMMI model to analyse GxE for dual purpose barley in multi-environment trials. Agric. Sci. Digest. 2016; 36 (1): 9–16.
Solonechnyi PM, Kozachenko MR, Vasko NI, Naumov OG, Solonechna OV, Vazhenina OYe, Kompanets KV. AMMI (additive main effect and multiplicative interaction) model for assessment of yield stability of spring barley genotypes. Sel. Nasinn. 2016; 110: 131–141.
Sarkar B, Sharma RC, Verma RPS, Sarkar A, Sharma I. Identifying superior feed barley genotypes using GGE biplot for diverse environments in India. Indian J. Genet. 2014; 74, (1): 26–33.
Mohammadi M, Noorinia AA, Khalilzadeh GR, Hosseinpoo T. Application of GGE biplot analysis to investigate GE interaction on barley grain yield. Current opinion in agriculture. 2015; 4 (1): 25–32.
Solonechnyi PM, Kozachenko MR, Vasko NI, Naumov OG, Solonechna OV, Vazhenina OE, Bondareva OB, Kovalenko AL. GGE biplot assessment of phenotypic stability of spring barley varieties. Sel. Nasinn. 2015; 107: 205–214.
Solonechnyi P, Vasko N, Naumov A, Solonechnaya O, Vazhenina O, Bondareva O, Logvinenko Y. GGE biplot analysis of genotype by environment interaction of spring barley varieties. Zemdirbyste-Agriculture. 2015; 102 (4): 431–436.
Kendal E. GGE biplot analysis of multi-environment yield trials in barley (Hordeum vulgare L.) cultivars. Journal of Crop Breeding and Genetics. 2016; 2 (1): 90–99.
Demydov OA, Hudzenko VM, Sardak MO, Ishchenko VA, Smulska IV, Koliadenko SS. Spring barley integrated testing for yielding and stability. Plant Varieties Studying and Protection. 2017; 13 (4): 343–350.
Mortazavian SMM, Nikkhah HR, Hassani FA, Sharif-al-Hosseini M, Taheri M, Mahlooji M. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. J. Agr. Sci. Tech. 2014; 16: 609–622.
Solonechnyi PN. AMMI and GGE biplot analyses of genotype-environment interaction in spring barley lines. Vavilovskii Zhurnal Genetiki i Selektsii. 2017; 21 (6): 657–662.
Gudzenko VN, Vasilkovskiy SP, Demidov AA. Use of AMMI and GGE BIPLOT models to evaluate of the winter barley breeding lines in the Forest-Steppe of Ukraine. Vestnik Belorusskoy Gosudarstvennoy Selskokhozyaystvennoy Akademii. 2017; 1: 67–70.
Demydov O, Hudzenko V, Sardak М, Ishchenko V, Demyanyuk О. Ecological spring barley strain testing on the final stage of breeding. Ahroekolohichnyi Zhurnal. 2017; 4: 58–65.
Vaezi B, Pour-Aboughadareh A, Mohammadi R, Armion M, Mehraban A, Hossein-Pour T, DoriiM. GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Research Communications. 2017; 45 (3): 500–511.
Khanzadeh H, Vaezi B, Mohammadi R, Mehraban A, Hosseinpor T, Shahbazi K. Grain yield stability of barley genotypes in uniform regional yield trails in warm and semi warm dry land area. Indian J. Agric. Res. 2018; 52 (1): 16–21.
Solonechnyi P, Kozachenko M, Vasko N, Gudzenko V, Ishenko V, Kozelets G, Usova N, Logvinenko Y, Vinyukov A.AMMI and GGEbiplot analysis of yield performance of spring barley (Hordeum vulgare L.) varieties in multi environment trials. Agriculture & Forestry. 2018; 64 (1): 121–132.
Method of examination and state testing of varieties of grain, cereal and leguminous crops. Okhorona prav na sorty roslyn. Kyiv: Alefa, 2003; 2 (3). 241 p.
Dospekhov BA. Methods of field experiment (with the basics of statistical processing of research results). 5th ed., rev. Moscow: Agropromizdat, 1985. 351 p.
Eberhart SA, Russel WA. Stability parameters for comparing varieties. Crop Science. 1966; 6: 36-40.
Wricke G. Über eine methode zur erfassung der okologischen streubreite in feldversuchen. Z. Pflanzenzuchtg. 1962;47: 92–96.
Lin CS, Binns MR. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sc. 1988; 68: 193–198.
Huehn M. Nonparametric measures of phenotypic stability. Part 1: Theory.Euphytica.1990; 47: 189–194.
Kilchevskiy AV, Khotyleva LV. A method for estimation of genotypes adaptive ability and stability, of environment’s differentiative ability. I. Grounds of the method. Genetika. 1985; 21 (9): 1481–1490
Khangildin VV, Litvinenko NA. Homeostatic and adaptability of winter wheat varieties. Nauch.-tekhn. byul. VSGI. 1981; 1 (39): 8–14.
Purchase JL, Hatting H, van Deventer CS. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: ІІ. Stability analysis of yield performance. South Afric. J. Plant Soil. 2000; 17: 101–107.
Guzhov YuL., Kesavaro PS, Velanki RK. Triticale - achievements and prospects of breeding on the mathematical modeling basis. М.: UDN, 1987. 232.
Gauch HG. Model selection and validation for yield trials with interaction. Biometrics. 1988; 44: 705–715.
Hongyu K, Garcia-Pena M, de Araujo LB, dos Santos Dias CT. Statistical analysis of yield trials by AMMI analysis of genotype x environment interaction. Biometrical letters. 2014; 51 (2): 89–102.
Yan W. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy Journal. 2002; 94: 990–996.
Yan W, Tinker NA. Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci. 2006; 86: 623–645.
Yan W, Kang MS, Ma B, Woods S, Cornelius PL. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science. 2007; 47: 641–653.
Frutos E, Galindo MP, Leiva V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk. Assess. 2014; 28: 1629–1641.
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2018 В. М. Гудзенко
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
При размещении текстов статей в электронных ресурсах авторские права сохраняются за автором печатной публикации.
Автор может не соглашаться с правками рецензентов и редакции, мотивируя при этом свою точку зрения.
Автор может требовать от редакции разъяснений или изменений в случае обнаружения существенных ошибок в его статье.
Автор может использовать материалы, опубликованные в журнале «Селекция и семеноводство» в своих работах, обязательно ссылаясь на наш журнал.