Генетические ресурсы нута и эффективность их использования в селекции

Авторы

  • V. I. Sichkar Одесская государственная сельскохозяйственная опытная станция НААН, Ukraine

DOI:

https://doi.org/10.30835/2413-7510.2020.222348

Ключевые слова:

нут, коллекционный образец, содержание белка, толерантность к болезням, продуктивность

Аннотация

Обобщены результаты более чем 20-летнего изучения большого набора генофонда нута, происходящего из многих стран мира. Выделены источники и доноры скороспелости, засухоустойчивости, крупности семян, ряда хозяйственно ценных признаков, повышенного содержания белка, улучшенных технологических показателей семян, толерантности против фузариозных и аскохитозных заболеваний.

Цель и задачи исследования. В условиях засушливой Степи выявить среди большого объёма коллекционного материала источники и доноры ценных хозяйственных признаков, лучшие из них использовать в селекционной программе.

Материалы и методы. В течение 1995–2020 гг. в засушливых условиях Степной зоны Украины оценили около трех тысяч генотипов нута, полученных из Национального Центра генетических ресурсов Украины (г. Харьков) и Международного научно-исследовательского института растениеводства полусухих тропиков (ICRISAT, Патанчеру, Индия). Опыты проводили на опытных полях Селекционно-генетического института (г. Одесса) и Одесской государственной сельскохозяйственной опытной станции НААН Украины. В полевых условиях коллекционные образцы высевали по типу селекционного питомника двухметровыми рядками с шириной междурядий 45 см. Стандартный сорт размещали через 20 номеров. Содержание белка в семенах определяли методом Кьельдаля, жира – методом Рушковского. Устойчивость против фузариоза оценивали на ранних стадиях роста проростков в лабораторных условиях на искусственно созданном инфекционном фоне.

Обсуждение результатов. Полученные в полевых условиях данные свидетельствуют о том, что наиболее численную группу составляют генотипы с продолжительностью вегетационного периода 81–100 дней. Наименьшей группой являлись ультраскороспелые формы, созревающие менее, чем за 75 дней. Также в этой группе спелости выявили максимальное количество ранозацветающих образцов. Наши наблюдения не установили чёткой зависимости продуктивности растений от продолжительности фаз «всходы – цветение» и «цветение – созревание», хотя группа высокопродуктивных образцов выделяется более растянутым периодом «цветение – созревание». Выделены образцы, у которых масса семян с растения на протяжении ряда лет превышает 10 г с растения, что соответствует урожайности около 3,0 т/га. Описаны генотипы, характеризующиеся повышенным количеством бобов и семян на растении, а также более существенным значением массы семян на растении. Выявлены четыре генотипа, формирующих по два боба в большинстве узлов. Генетический анализ показал, что данный признак определяется одним рецессивным геном. Идентифицирован ряд генотипов с массой 1000 семян, превышающей 600 г. Важное значение для селекции имеют коллекционные образцы нута, совмещающие высокий уровень семенной продуктивности с массой 1000 семян более 400 г. Рекомендованы для использования в гибридизации высокобелковые образцы для создания сортов с повышенным сбором белка с единицы площади. Установлена существенная генотипическая изменчивость абсорбирования воды семенами нута при различных температурных режимах. Более интенсивно этот процесс протекал у генотипов NEC 1838 (Чили) и образца из Италии. В лабораторных условиях 27 образцов проявили высокий уровень толерантности против возбудителя фузариоза, одновременно обладая ценным комплексом хозяйственных признаков. Описанные в Индии засухоустойчивые генотипы оказались в наших условиях ультраскороспелыми и низкорослыми, хотя формировали крупные семена. Приведена краткая характеристика 12 сортов нута, полученных в период проведения этих исследований.

Выводы. В результате проведенных исследований выделены и охарактеризованы доноры и источники основных ценных хозяйственных признаков нута, выявлены образцы с комплексами ценных признаков и свойств.

Наличие генотипов из различных географических зон и генетических центров позволят более целенаправленно вести селекцию, особенно при создании устойчивых к болезням форм. Описанные нами образцы нута могут быть использованы в селекции другими научными учреждениями нашей страны и за рубежом

Библиографические ссылки

Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB. Break crops and rotations for wheat. Crop and pasture science. 201; 66(6): 523‒552. DOI: 10. 1071/CP 14252.

Gaur PM, Jukanti AK, Varshney RK. Impact of genomic technologies on chickpea breeding strategies. Agronomy. 2012; 2(3): 199‒221. DOI: 10.3390/agronomy 2030199.

Lin R, Yang H, Khan TN, Siddigue KHM, Yan G. Characterization of genetic diversity and DNA fingerprinting of Australian chickpea (Cicer arietinum L.) cultivars using MFLP markers. Austr. J. Agric. Res. 2008; 59(8): 707‒713. DOI: 10.1071/AR07401.

Saced A, Hovsepyan H, Darvishzadeh R, Imtiaz M, Panguluri SK, Nazaryan R. Genetic diversity of Iranian accessions, improved lines of chickpea (Cicer arietinum L.) and their wild relatives by using simple sequence repeats. Plant Mol. Biol. Rep. 2011; 29: 848‒858. DOI: 10.1007/S11105-011-0294-5.

Abbo S, Berger J, Turner NC. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Func. Plant Biol. 2003; 30(10): 1081‒1087. DOI: 10.1071/FP03084.

Magbool MA, Aslam M, Ali H. Breeding for improved drought tolerance in chickpea. Plant Breed. 2017; 136(3): 300‒318. DOI: 10.1111/pbr. 12477.

Darai R, Ojha BR, Sarker A, Sah R. Genetics and breeding for drought tolerance in food legumes. Intern. J. Environ. Agric. Biotech. 2016; 1(4): 958‒967. DOI: 10.22161/ijeab/1.4.47.

Choudhary AK, Sultana R, Vales MI, Saxena KB, Kumar RR, Rathakumar P. Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse props of the semi-arid tropics. Crop J. 2018; 6(2): 99‒114. DOI: 10.1016/j.cj.2017.11.002.

Kaloki P, Luo Q, Trethowan R, Tan DKY. Can the development of drought tolerant ideotype sustain Australian chickpea yield. Intern. J. Biometeorol. 2019; 63(3): 393‒403. DOI: 10.1007/S00484-019-01672-7.

Ahmad F, Gaur PM, Croser JS. Chickpea (Cicer arietinum L.). Genetic resources, chromosome engineering, and crop improvement. Taylor and Francis. London, UK. 2005. P. 229‒267.

Singh M, Bhordway C, Singh S, Panatu S, Chaturvedi SK, Rana JC, Sarker A. Chickpea genetic resources and its utilization in India: Current status and future prospects. Indian J. Genet. 2016; 76(4): 515‒529. DOI:10.5958/0975-6906.2016.00070.5

Archak S, Tyagi RK, Harer PN, Mahase LB, Singh N, Dahiya OP, Bansal KC. Characterization of chickpea germplasm National Gene Bank and development of core set using qualitative and quantitative data. Crop j. 2016; 4(5): 417‒424. DOI:10.1016/j.cj. 2016.06.013.

ICRISAT. 2010. Strategic Plan to 2020: Inclusive market-oriented development for smallholder farmers in the tropical drylands. Patancheru, Andhra Pradesh, India, ICRISAT. 2010. 60 p.

Kobyzeva LN. Theoretical basis for the formation of the bank of grain legumes genetic resources of Ukraine and the directions of its usage. Thesis for the doctor of agricultural science degree. Institute of Agriculture of Grain Farming NAAS. Dnipropetrovsk, 2011. 43 p.

Bains NS, Singh S, Gill MS, Dhillon BS. Enhanced utilization of plant genetic resources in crop improvement programmes. Ind. J. Plant Genet. Resour. 2012; 25(1): 52–62.

Singh M, Bisht IS, Dutta M, Kumar K, Basandrai AK, Kaur L, Bansal KS. Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under North western Indian conditions. Crop Sci. 2014; 54(1): 229–239. DOI: 10.2135/cropsci 2013.04.0225.

Singh KB, Malthotra RS, Saxena MC. Sources on tolerance to cold in Cicer species. Crop Sci. 1990; 30(5): 1136–1138. DOI: 10.2135/cropsci 1990.0011183x003000050036x.

Singh KB, Malthotra RS, Halila MH, Knights EJ, Verme MM. Current status and future strategy inbreeding chickpea for resistance to biotic and abiotic stresses. Euphytica. 1993; 73(1): 137–149. DOI: 10.1007/bf00027150.

Toker C. Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet. Resour. Crop Evol. 2005; 52: 1–5. DOI: 10.1007/510722-005-1743-5.

Berger JD, Buck R, Henzell JM, Turner NC. Evolution in the genus Cicer – vernalization response and low temperature pod set in chickpea (C. arietinum L.) and its wild relatives. Austr. J. Agric. Res. 2005; 56(11): 1191–1200. DOI: 10.1071/ar05089.

Toker C, Canci H, Yildirim T. Evaluation of perennial wild Cicer species for drought resistance. Genet. Resour. Crop Evol. 2007; 54(8): 1781–1786. DOI: 10.1007/s10722-006-9197-y.

Canci H, Toker EC. Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet. Resour. Crop Evol. 2009; 56(1). DOI: 10.1007/s10722-008-9335-9.

Chandora R, Gayacharan, Shekhawai N, Malhotra N. Chickpea genetic resources: collection, conservation, characterization and maintenance. Chickpea: Crop Wild Relatives for Enhancing Genetic Gains. Ed. Singh M., Academic Press. London, UK. 2020. P. 37–61. DOI: 10.1016/6978-0-12-818299-4.00003-8.

Berger J, Abbo S, Turner NC. Ecogeography of annual Wild Cicer species. Crop Sci. 2002; 43(3): 1076–1090. DOI: 10.2135/cropsci 2003.1076.

Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Paridha SK. Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PloS One. 2014; 9(9): e107484. DOI: 10.1371/journal pone 0107484.

Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CLL, Sharma S, Paridha SK. Genome-wide insertion-deletion (InDel) marker discovery and genotyping for genetics – assisted breeding applications in chickpea. DNA Res. 2015; 22(5): 377–386. DOI: 10.1093/dnares/dsv020.

Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Paridha SK. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Frontiers in Plant Sci. 2016; 7: 302. DOI: 10.3389/fpls. 2016.00302.

Kumar S, Gugita S, Singh BB. How wide the genetic base of pulse crops is. Pulses in new perspective. Eds.: Ali M, Singh BB, Kumar S, Dhar V. Proc. Nat. Simp. Crop Diversification Natur. Resour. Manag. Kanpur, India. 2004. P. 211–217.

Yadav SS, Hegde VS, Habibi AB, Dia M, Verma S. Climate change, agriculture and food security. Food security and climate change. Eds.: Yadav SS, Redden RJ, Hatfield JL, Ebert AW, Huhter D. New Jersey, USA. Johr Wiley and Sons Ltd. 2019. P. 1–50.

Maxted N, Avagyan A, Frese L, Iriondo J, Kell S, Brehm JM, Dulloo E. Conservation planning for crop wild relative diversity. Crop wild relatives and climate change. Eds.: Redden R, Yadav SS, Maxted M, Dulloo E, Guarino L, Smith P. USA. Wiley-Blackwell. 2015. P. 88–107.

Berger JD. Ecogeography and evolutionary approaches to improving adaptation of autumn-sown chickpea (Cicer arietinum L.) to terminal drought. The search for reproductive chilling tolerance. Field Crops Res. 2007; 104(1-2): 112–122. DOI: 10.1016/j.for.2007.03.021.

Berger JD, Kumar S, Nayyar H, Street K, Sandhu JS, Henzell JM, Clarke HC. Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Res. 2012; 126: 119–129. DOI: 10.1016/j.for.2011.09.020.

Knights EJ, Southwell RJ, Shwinghamer MW, Harden S. Resistance to Phytophtora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Austr. J. Agric. Res. 2008; 59(4): 383–387. DOI: 10.107/AR07175.

Reen RA, Mumford MH, Thampson JP. Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum L.). Phytopathology. 2019; 109(7): 1270–1279. DOI: 10.1094/Phyto-02-19-0047-R.

Kozlov K, Singh A, Bishop-von Wettberg E, Kahraman A, Aydogan A, Samsonova M. Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors. BMC Plant Biol. 2019; 19(2): 1–9. DOI: 10.1186/s12870-019-1685-2.

Engejs JMM, Maggioni L. AEGIS: A regionally based approach to PGR conservation agrobiodiversity conservation securing the diversity of crop wild relatives and landraces. Ed. Masted N. et al. CABI. Wallingford. 2012. P. 321–326.

Weise S, Oppermann M, Maggioni L, van Hintum T, Kniipffer H. EURISCO: The European search catalogue for plant genetic resources. Nucleic Acids Res. 2016; 1: 1–6. DOI: 10.1093/nar/gkw755.

Shin MG, Bulyntsev SV, Chang PL, Korbu LB, Carrasqnila-Garcia N, Vishnyakova MA, Nuzhdin SV. Multi-trait analysis of domestication genes in Cicer arietinum. Cicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement. Plant Sci. 2019; 285: 122–131. DOI: 10.1016/plansci.2019.04.018.

Von Wettberg EJB, Chang PL, Basdemir F, Carresquila-Garcia N, Korbu LB, Moenga SM, Cook DR. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications. 2018; 9: 649. DOI: 10.1038/s41647-018-02867.

Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H. Developing climate-resistant chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci. 2020; 10: 1759. DOI: 10.3389/pls. 2019.01759.

Farahani S, Maleki M, Mehrabi R, Kanouni H, Scheben A, Batley J, Talebi R. Whole genome diversity, population structure, and linkage disequilibrium of chickpea (Cicer arietinum L.) genotypes using genome-wide DArTseq-based SNP markers. Genes. 2019; 10: 676. DOI: 10.3390/genes 10090676.

Vus NO. Breeding value of chickpea (Cicer arietinum L.) starting material by adaptability to biotic and abiotic factors in the Eastern Forest-Steppe of Ukraine. [dissertation]. Plant Production Institute nd. a. VYa Yuriev of NAAS. Kharkiv. 2018.

Gaur PM, Thudi M, Samineni S, Varshney RR. Advances in chickpea genomics. Legumes in the Omic Era. ICRISAT, India. 2014. P. 73–94. DOI: 10.1007/978-1-4614-8370-04.

Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Parida SK. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Scientific Rep. 2015; 5: 12468. DOI: 10.1038/srep12468.

Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Liu X. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics. 2019; 51: 857–864. DOI: 10.1038/s41588-019-0401-3.

Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh P, Misra G, Chattopadhyay D. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Scientific Reports. 2015; 5: 12806. DOI: 10.1038/step12806.

Gupta DS, Thavarajah D, Mc Gee RJ, Coyne CJ, Kumar S, Thavajah P. Genetic diversity among cultivated and wild lentils for iron, zinc, copper, calcium and magnesium concentrations. Austral. J. Crop Sci. 2016; 10(10): 1381–1387. DOI: 10.21475/ajcs.2016.10.10.

Kyrychenko VV, Kobyzeva LN, Petrenkova VP, Riabchun VK, Bezuglaya ON. Identification of signs of legumes (dry bean, chickpea, lentil). Kharkiv: Plant Production Institute nd. a. VYa Yuriev of NAAS, 2009. 118 p.

Kobyzeva LN, Bezuglaya ON, Sylenko SI. et al. Methodical recommendations for the study of genetic resources of legumes. Kharkiv: Plant Production Institute nd. a. VYa Yuriev of NAAS, 2016. 84 p.

Babayants OV, Babayants LT. Breeding basics and methodology for assessing the resistance of wheat to pathogens. Odessa: Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, 2014. 401 p.

Gontarenko OV. Wheat fusarium will in the South of Ukraine and varietal resistance. [dissertation]. Kyiv, 1993.

Novikova NE, Lachanov AP, Antonova GA. Method of selection of highly productive pea forms. Patent of Russian Federation № 2031573. 1995.

Sichkar VI, Babayants OV, Pasichnik SM, Kryvenko AI, Bushulyan MA. Evalution of the resistance to fusarium in chickpea collection and breeding materials. Zernobobovyie I krupianyie kultury. 2018; 1(25): 67–76.

Germantzeva NI. Biological features, breeding and seed production of chickpea in arid Volga region. [dissertation]. Penza, 2001.

Bushulyan OV, Sichkar VI. Genetic analysis of double-padded chickpea. Zbirnyk naukovyh praz. BGI – NC SGSR. 2003; 4(44): 20–23.

Upadhyaya HD, Furman BJ, Dwivedi SL, Udupa SM, Gowda CLL, Baum M, Singh S. Development of a composite collection for mining germplasm possessing allelic variation for beneficial traits in chickpea. Plant Gen. Res. 2006; 4(1): 13–19. DOI: 0.1079/pgr2005101.

Gaur PM, Pande S, Upadhyaya HD, Rao BV. Extra-large Kabuli chickpea with high resistance to Fusarium wilt. Intern. Chickpea and Pigeonpea Newsl. 2006; 13: 5–7.

Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Kulmal PL. Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J. Genetics. 2015; 94(2): 279–286. DOI: 10.1007/s12041-015-0529-6.

Jukanti A, Guar P, Gowda C, Chiblar R. Nutritional quality and health benefits of chickpea. Br. J. Nutr. 2012; 108: 11–26.

Halila I, Rubio J, Millan T, Gil J, Kharrat M, Marrakchi M. Resistance in chickpea (Cicer arietinum L.) to Fusarium wilt race O. Plant Breed. 2010; 129(5): 563–566. DOI: 10.1111/j.1439-0523.2009.01703.x.

Soregaon CD, Ravikumar RL. Segregation of Fusarium wilt resistance in recombinant inbred lines of two diverse crosses of chickpea (Cicer arietinum L.). Karnataka J. Agric. Sci. 2012; 25(1): 127–128.

Bushulyan OV, Sichkar VI. Directions and results of chickpea breeding. Visnyk agrarnoyi nauky. A special issue dedicated to the 100-th anniversary of BGI – NC SGSR. 2012: 73–76.

Sichkar VI. The state and prospects of the legume breeding at BGI – NC SGSR. Zbirnyk naukovyh praz BGI – NC SGSR. 2002; 3(43): 92–103.

Опубликован

2020-12-30

Выпуск

Раздел

МЕТОДЫ И РЕЗУЛЬТАТЫ СЕЛЕКЦИИ