The effect of sodium chondroitin sulfate on free-radical processes in cartilage tissue of rats with osteoarthrosis
DOI:
https://doi.org/10.15587/2519-8025.2017.109318Keywords:
osteoarthrosis, oxide stress, peroxide oxidation of lipids, cartilages, chondroitin sulfateAbstract
It was established, that at osteoarthrosis, induced by the administration of monoiodine acetate, the oxide stress develops in the cartilage tissue of knee joints, at that the content of active forms of oxygen and products of lipids peroxide oxidation grows, especially: hydrogen peroxide, superoxide-anion radical, dienoic conjugates, RBA-active products and Schiff bases. Activities of xantinoxidase prooxidant enzyme and antioxidant superoxidysmutase also grew at the pathology. It was revealed, that at administering the preparation on the base of chondroitin sulfate, the content of active forms of oxygen and products of lipids peroxide oxidation decreased in the cartilage tissue of rats with chemically induced osteoarthrosis. The negative control proved that the preparation on the base of chondroitin sulfate doesn’t influence the shift of the prooxidant-antioxidant balance in experimental animals. The obtained data testify to antioxidant properties of this preparationReferences
- Martin, J. A., Buckwalter, J. A. (2002). Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology, 3 (5), 257–264. doi: 10.1023/a:1020185404126
- Malfait, A. M. (2016). Osteoarthritis year in review 2015: biology. Osteoarthritis and Cartilage, 24 (1), 21–26. doi: 10.1016/j.joca.2015.09.010
- Sawitzke, A. D., Shi, H., Finco, M. F., Dunlop, D. D., Bingham, C. O., Harris, C. L. et. al. (2008). The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: A report from the glucosamine/chondroitin arthritis intervention trial. Arthritis & Rheumatism, 58 (10), 3183–3191. doi: 10.1002/art.23973
- Clegg, D. O. Reda, D. J., Harris, C. L., Klein, M. A., O'Dell, J. R., Hooper, M. M. et. al. (2006). Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New England Journal of Medicine, 354 (8), 795–808.
- Wildi, L. M., Raynauld, J.-P., Martel-Pelletier, J., Beaulieu, A., Bessette, L., Morin, F. et. al. (2011). Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double-blind, placebo-controlled pilot study using MRI. Annals of the Rheumatic Diseases, 70 (6), 982–989. doi: 10.1136/ard.2010.140848
- Sawitzke, A. D., Shi, H., Finco, M. F., Dunlop, D. D., Harris, C. L., Singer, N. G. et. al. (2010). Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Annals of the Rheumatic Diseases, 69 (8), 1459–1464. doi: 10.1136/ard.2009.120469
- Gus'kova, T. A. (2010). Doklinicheskoe toksikologicheskoe izuchenie lekarstvennyh sredstv kak garantiya bezopasnosti provedeniya ih klinicheskih issledovaniy. Toksikologicheskiy vestnik, 5, 2–5.
- Hartree, E. F. (1972). Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry, 48 (2), 422–427. doi: 10.1016/0003-2697(72)90094-2
- Sutherland, M. W., Learmonth, B. A. (1997). The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Dismutase. Free Radical Research, 27 (3), 283–289. doi: 10.3109/10715769709065766
- Able, A. J., Guest, D. I., Sutherland, M. W. (1998). Use of a New Tetrazolium-Based Assay to Study the Production of Superoxide Radicals by Tobacco Cell Cultures Challenged with Avirulent Zoospores of Hashimoto, S. (1974). A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Analytical Biochemistry, 62 (2), 426–435. doi: 10.1016/0003-2697(74)90175-4
- Phytophthora parasiticavarnicotianae. Plant Physiology, 117 (2), 491–499. doi: 10.1104/pp.117.2.491
- Gay, C. A., Gebicki, J. M. (2003). Measurement of protein and lipid hydroperoxides in biological systems by the ferric–xylenol orange method. Analytical Biochemistry, 315 (1), 29–35. doi: 10.1016/s0003-2697(02)00606-1
- Gavrilov, V. B., Gavrilova, A. R., Hmara, N. F. (1988). Izmerenie dienovyh konyugatov v plazme krovi po UF-pogloshcheniyu geptanovyh i izopropanol'nyh ekstraktov. Laboratornoe delo, 2, 540–546.
- Kolesova, O. E., Markin, A. A., Fedorova, T. N. (1984). Perekisnoe okislenie lipidov i metody opredeleniya produktov lipoperoksidatsii v biologicheskih seredah. Laboratornoe delo, 9, 60–63.
- Orekhovich, V. N. (Ed.) (1977). Sovremennye metody v biohimii. Moscow: Meditsina, 392.
- Nasledov, A. D. (2006). Matematicheskie metody psihologicheskogo issledovaniya. Saint Petersburg: Rech', 166.
- Koike, M., Nojiri, H., Ozawa, Y., Watanabe, K., Muramatsu, Y., Kaneko, H. et. al. (2015). Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Scientific Reports, 5 (1). doi: 10.1038/srep11722
- Hille, R. (2006). Structure and Function of Xanthine Oxidoreductase. European Journal of Inorganic Chemistry, 2006 (10), 1913–1926. doi: 10.1002/ejic.200600087
- Aibibula, Z., Ailixiding, M., Iwata, M., Piao, J., Hara, Y., Okawa, A., Asou, Y. (2016). Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis. Biochemical and Biophysical Research Communications, 472 (1), 26–32. doi: 10.1016/j.bbrc.2016.02.039
- Stabler, T., Zura, R. D., Hsueh, M.-F., Kraus, V. B. (2015). Xanthine oxidase injurious response in acute joint injury. Clinica Chimica Acta, 451, 170–174. doi: 10.1016/j.cca.2015.09.025
- Hanachi, N. et. al. (2009). Comparison of xanthine oxidase levels in synovial fluid from patients with rheumatoid arthritis and other joint inflammations. Saudi medical journal, 30 (11), 1422–1425.
- Na, J.-Y., Song, K., Kim, S., Kwon, J. (2016). Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochemical and Biophysical Research Communications, 473 (4), 1301–1308. doi: 10.1016/j.bbrc.2016.04.064
- Rojkind, M., Dominguez-Rosales, J.-A., Nieto, N., Greenwel, P. (2002). Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences, 59 (11), 1872–1891. doi: 10.1007/pl00012511
- Henrotin, Y., Bruckner, P., Pujol, J.-P. (2003). The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis and Cartilage, 11 (10), 747–755. doi: 10.1016/s1063-4584(03)00150-x
- Berlett, B. S., Stadtman, E. R. (1997). Protein Oxidation in Aging, Disease, and Oxidative Stress. Journal of Biological Chemistry, 272 (33), 20313–20316. doi: 10.1074/jbc.272.33.20313
- Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15 (4), 316–328. doi: 10.1016/j.numecd.2005.05.003
- Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329 (1-2), 23–38. doi: 10.1016/s0009-8981(03)00003-2
- Tiku, M. L., Shah, R., Allison, G. T. (2000). Evidence Linking Chondrocyte Lipid Peroxidation to Cartilage Matrix Protein Degradation. Journal of Biological Chemistry, 275 (26), 20069–20076. doi: 10.1074/jbc.m907604199
- Henrotin, Y., Kurz, B., Aigner, T. (2005). Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis and Cartilage, 13 (8), 643–654. doi: 10.1016/j.joca.2005.04.002
- Tiku, M., Allison, G., Naik, K., Karry, S. (2003). Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthritis and Cartilage, 11 (3), 159–166. doi: 10.1016/s1063-4584(02)00348-5
- Badokin, V. V. (2009). Preparaty hondroitina sul'fata v terapii osteoartroza. RMZH «Revmatologiya», 21, 1461.
- Anikin, S. G., Alekseeva, L. I. (2012). Chondroitin sulfate: the mechanisms of action, its efficacy and safety in the therapy of osteoarthrosis. Modern Rheumatology Journal, 3, 78. doi: 10.14412/1996-7012-2012-753
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Katerina Dvorshchenko, Oleksandr Korotkyi, Volodymyr Vereschaka, Yelizaveta Tikhova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.