Finding genetic factors associated with cognitive abilities
DOI:
https://doi.org/10.15587/2519-4984.2021.247416Keywords:
genetic factors, cognitive abilities, single-nucleotide polymorphisms, candidate genesAbstract
The article provides an overview of the results of modern genetic studies of human cognitive abilities. Finding genetic factors, associated with cognitive abilities, will have far-reaching ramifications at all levels of understanding from DNA to brain and to behavior. Despite its complexity, cognitive ability is a reasonable candidate for molecular genetic research because it is one of the most heritable features of behavior. The first attempts to find genetic factors, associated with cognitive abilities, focused on genes, involved in brain development and function, but this direction proved to be unproductive, as it turned out that there are about 18.000 genes, and it was too difficult to detect among them those genes that are involved in cognitive processes. In addition, a considerable number of genetic factors of human traits are single-nucleotide polymorphisms (SNPs) which are in non-coding DNA regions rather than in traditional genes. The effect of each separate SNP is unimportant, and a clear expression of the general cognitive ability is noticeable only if all the associated SNPs are involved. Currently, over 11,000 such SNPs have been identified, which are uneven in different functional regions of the genome: over 60 % in gene introns, almost 30 % in intergenic DNA regions, about 5 % in gene exons, and about 5 % in transcribed regions (downstream, upstream) and frame regions (UTR'5, UTR'3) of genes. Also there are found 74 SNPs, associated with school achievements. These SNPs are disproportionately located in genes that regulate transcription and alternative splicing of other genes, which are expressed in nerve tissues of the brain during its prenatal development. Finding genetic factors that explain the inheritance of cognitive abilities is important for both science and society. Information about these factors can be used in other fields of human science – human genetics and medicine. It will open up new scientific horizons for education too owing to understanding of the genetic aspects of learning and memory
References
- Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24 (1), 13–23. doi: https://doi.org/10.1016/s0160-2896(97)90011-8
- Encyclopedia Britannica (2020). Behaviour genetics. Available at: https://www.britannica.com/science/behaviour-genetics#accordion-article-history
- Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, Praeger, 648.
- Spearman, C. (1904). “General Intelligence,” Objectively Determined and Measured. The American Journal of Psychology, 15 (2), 201. doi: https://doi.org/10.2307/1412107
- Payton, A. (2009). The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychology Review, 19 (4), 451–477. doi: https://doi.org/10.1007/s11065-009-9116-z
- Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M. et. al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478 (7370), 483–489. doi: https://doi.org/10.1038/nature10523
- Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., van der Loos, M. et. al. (2012). Most Reported Genetic Associations With General Intelligence Are Probably False Positives. Psychological Science, 23 (11), 1314–1323. doi: https://doi.org/10.1177/0956797611435528
- Franić, S., Dolan, C. V., Broxholme, J., Hu, H., Zemojtel, T., Davies, G. E. et. al. (2015). Mendelian and polygenic inheritance of intelligence: A common set of causal genes? Using next-generation sequencing to examine the effects of 168 intellectual disability genes on normal-range intelligence. Intelligence, 49, 10–22. doi: https://doi.org/10.1016/j.intell.2014.12.001
- Goldberg, T. E., Weinberger, D. R. (2004). Genes and the parsing of cognitive processes. Trends in Cognitive Sciences, 8 (7), 325–335. doi: https://doi.org/10.1016/j.tics.2004.05.011
- Kovas, Y., Plomin, R. (2006). Generalist genes: implications for the cognitive sciences. Trends in Cognitive Sciences, 10 (5), 198–203. doi: https://doi.org/10.1016/j.tics.2006.03.001
- Winterer, G., Goldman, D. (2003). Genetics of human prefrontal function. Brain Research Reviews, 43 (1), 134–163. doi: https://doi.org/10.1016/s0165-0173(03)00205-4
- Bush, W. S., Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8 (12). doi: https://doi.org/10.1371/journal.pcbi.1002822
- Butcher, L. M., Davis, O. S. P., Craig, I. W., Plomin, R. (2008). Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500K single nucleotide polymorphism microarrays. Genes, Brain and Behavior, 7 (4), 435–446. doi: https://doi.org/10.1111/j.1601-183x.2007.00368.x
- Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D. et. al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16 (10), 996–1005. doi: https://doi.org/10.1038/mp.2011.85
- Davis, O. S. P., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J. C., Simpson, M. A. et. al. (2010). A Three-Stage Genome-Wide Association Study of General Cognitive Ability: Hunting the Small Effects. Behavior Genetics, 40 (6), 759–767. doi: https://doi.org/10.1007/s10519-010-9350-4
- Need, A. C., Attix, D. K., McEvoy, J. M., Cirulli, E. T., Linney, K. L., Hunt, P. et. al. (2009). A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Human Molecular Genetics, 18 (23), 4650–4661. doi: https://doi.org/10.1093/hmg/ddp413
- Benyamin, B., Pourcain, Bs., Davis, O. S., Davies, G., Hansell, N. K., Visscher, P. M. et. al. (2013). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19 (2), 253–258. doi: https://doi.org/10.1038/mp.2012.184
- Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S. et. al. (2015). Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Molecular Psychiatry, 20 (2), 183–192. doi: https://doi.org/10.1038/mp.2014.188
- GeneCards. The Human Gene Database (2020). Available at: https://www.genecards.org/
- National Center for Biotechnology Information USA: Database of Single Nucleotide Polymorphisms. Available at: https://www.ncbi.nlm.nih.gov/snp/
- MalaCards: The human disease database (2020). Available at: https://www.malacards.org/
- Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D. et. al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9 (1). doi: https://doi.org/10.1038/s41467-018-04362-x
- Zhao, Z., Fu, Y.-X., Hewett-Emmett, D., Boerwinkle, E. (2003). Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene, 312, 207–213. doi: https://doi.org/10.1016/s0378-1119(03)00670-x
- Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. P., Harris, S. E. et. al. (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Molecular Psychiatry, 21 (6), 758–767. doi: https://doi.org/10.1038/mp.2016.45
- Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E. et. al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49 (7), 1107–1112. doi: https://doi.org/10.1016/j.euroneuro.2017.08.013
- Hill, W. D., Marioni, R. E., Maghzian, O., Ritchie, S. J., Hagenaars, S. P., McIntosh, A. M. et. al. (2018). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Molecular Psychiatry, 24 (2), 169–181. doi: https://doi.org/10.1038/s41380-017-0001-5
- Okbay, A., Beauchamp, J., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. et. al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533 (7604), 539–542. doi: https://doi.org/10.1038/nature17671
- Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J. et. al. (2014). Genetic Variation Associated with Differential Educational Attainment in Adults Has Anticipated Associations with School Performance in Children. PLoS ONE, 9 (7). doi: https://doi.org/10.1371/journal.pone.0100248
- Krapohl, E., Plomin, R. (2015). Genetic link between family socioeconomic status and children’s educational achievement estimated from genome-wide SNPs. Molecular Psychiatry, 21 (3), 437–443. doi: https://doi.org/10.1038/mp.2015.2
- Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B. et. al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences, 111 (38), 13790–13794. doi: https://doi.org/10.1073/pnas.1404623111
- Luciano, M., Montgomery, G. W., Martin, N. G., Wright, M. J., Bates, T. C. (2011). SNP Sets and Reading Ability: Testing Confirmation of a 10-SNP Set in a Population Sample. Twin Research and Human Genetics, 14 (3), 228–232. doi: https://doi.org/10.1375/twin.14.3.228
- Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., Plomin, R. (2007). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13 (7), 729–740. doi: https://doi.org/10.1038/sj.mp.4002063
- Docherty, S. J., Davis, O. S. P., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A. et. al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain and Behavior, 9 (2), 234–247. doi: https://doi.org/10.1111/j.1601-183x.2009.00553.x
- Donati, G., Dumontheil, I., Meaburn, E. L. (2019). Genome‐Wide Association Study of Latent Cognitive Measures in Adolescence: Genetic Overlap With Intelligence and Education. Mind, Brain, and Education, 13 (3), 224–233. doi: https://doi.org/10.1111/mbe.12198
- Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V. et. al. (2006). Common Kibra Alleles Are Associated with Human Memory Performance. Science, 314 (5798), 475–478. doi: https://doi.org/10.1126/science.1129837
- Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M. et. al. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44 (5), 552–561. doi: https://doi.org/10.1038/ng.2250
- Burgess, N., Maguire, E. A., O’Keefe, J. (2002). The Human Hippocampus and Spatial and Episodic Memory. Neuron, 35 (4), 625–641. doi: https://doi.org/10.1016/s0896-6273(02)00830-9
- Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J. et. al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97 (8), 4398–4403. doi: https://doi.org/10.1073/pnas.070039597
- Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476 (7361), 458–461. doi: https://doi.org/10.1038/nature10287
- Freitag, C. M., Luders, E., Hulst, H. E., Narr, K. L., Thompson, P. M., Toga, A. W. et. al. (2009). Total Brain Volume and Corpus Callosum Size in Medication-Naïve Adolescents and Young Adults with Autism Spectrum Disorder. Biological Psychiatry, 66 (4), 316–319. doi: https://doi.org/10.1016/j.biopsych.2009.03.011
- Posthuma, D., De Geus, E. J. C., Baaré, W. F. C., Pol, H. E. H., Kahn, R. S., Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5 (2), 83–84. doi: https://doi.org/10.1038/nn0202-83
- Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23 (4), 289–299. doi: https://doi.org/10.1016/j.eurpsy.2007.05.006
- Knopik, V. S., Neiderhiser, J. M., DeFries, J. C., Plomin, R. (2017). Behavioral Genetics. New York: Worth Publishers, 508.
- Luciano, M., Svinti, V., Campbell, A., Marioni, R. E., Hayward, C., Wright, A. F. et. al. (2015). Exome Sequencing to Detect Rare Variants Associated With General Cognitive Ability: A Pilot Study. Twin Research and Human Genetics, 18 (2), 117–125. doi: https://doi.org/10.1017/thg.2015.10
- Marioni, R. E., Penke, L., Davies, G., Huffman, J. E., Hayward, C., Deary, I. J. (2014). The total burden of rare, non-synonymous exome genetic variants is not associated with childhood or late-life cognitive ability. Proceedings of the Royal Society B: Biological Sciences, 281 (1781). doi: https://doi.org/10.1098/rspb.2014.0117
- Plomin, R. (1999). Genetics and general cognitive ability. Nature, 402 (S6761), C25–C29. doi: https://doi.org/10.1038/35011520
- Spain, S. L., Pedroso, I., Kadeva, N., Miller, M. B., Iacono, W. G., McGue, M. et. al. (2015). A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence. Molecular Psychiatry, 21 (8), 1145–1151. doi: https://doi.org/10.1038/mp.2015.108
- Luciano, M., Hansell, N. K., Lahti, J., Davies, G., Medland, S. E., Räikkönen, K. et. al. (2011). Whole genome association scan for genetic polymorphisms influencing information processing speed. Biological Psychology, 86 (3), 193–202. doi: https://doi.org/10.1016/j.biopsycho.2010.11.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Valentyn Pomohaibo, Natalia Karapuzova, Yuliia Pavlenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.