Application of the derivative function of a single variable in mathematics and physics courses in higher educational institutions

Authors

DOI:

https://doi.org/10.15587/2519-4984.2025.345337

Keywords:

derivative, differentiation rules, tangent line, extremum, mathematical analysis, velocity, acceleration, physical laws

Abstract

The article explores the theoretical foundations of the concept of the derivative, as well as its geometric and physical meaning, since the derivative is an important notion that shows how quickly a quantity changes. In mathematics, it represents the slope of the tangent to a curve, while in physics it reflects the rate of a process.

The article examines how exactly the derivative is used in mathematics and physics, and why it is considered an essential tool for studying various phenomena, as understanding derivatives is necessary for learning mathematical and physical disciplines.

It explains the concept of the derivative, how it can be represented graphically, and its significance in physics. Attention is given to the use of derivatives for solving mathematical problems: analyzing the behavior of functions, constructing tangents, finding maximum and minimum values, interpreting graphs, and resolving indeterminate forms using L’Hôpital’s rule. The article highlights the applications of derivatives in physics, particularly for describing motion, determining instantaneous velocity and acceleration. It also emphasizes that derivatives are used to formulate the laws of dynamics (such as Newton’s second law) and to describe various physical phenomena, including oscillations and radioactive decay.

The text underscores that understanding derivatives is essential for mastering engineering and physical sciences, as well as mathematics and physics in general. Derivatives are also used in studying theoretical mechanics, material resistance, hydraulic and hydrodynamic equations, thermal engineering, and electrical engineering.

Finally, it explains why students need to understand derivatives, as they form the foundation for studying mathematics and applying it in technical sciences and engineering

Author Biographies

Tetiana Voііtik, Odesa National Maritime University

Senior Lecturer

Department of of Higher Mathematics

Serhii Kyrylov, Odesa National Maritime University

PhD, Associate Professor

Department of Higher Mathematics

Tetiana Kopeykina, Odesa Military Academy

Lecturer

Department of Fundamental Science

Olha Shurlo, Odesa Military Academy

Lecturer

Department of Fundamental Sciences

References

  1. Ilchenko, O. V. (2021). Matematychnyi analiz. Kyiv: KNU im. Tarasa Shevchenka, 65. Available at: https://www.mechmat.univ.kiev.ua/wp-content/uploads/2021/03/posibnyk_ilchenko.pdf
  2. Dorohovtsev, A. Ya. (1993). Matematychnyi analiz. Chastyna 1. Kyiv: Lybid, 320. Available at: https://pdf.lib.vntu.edu.ua/books/2015/Dorogovtsev_P1_1993_320.pdf
  3. Paliekhin, V. P. (2013). Kurs fizyky. Kharkiv: KhNU imeni V. N. Karazina, 516. Available at: https://ekhnuir.karazin.ua/handle/123456789/13329
  4. Bezklubenko, I. S. (2024). Matematychnyi analiz. Chastyna 1. Kyiv: KNUBA, 224. Available at: https://www.mechmat.univ.kiev.ua/wp-content/uploads/2021/03/posibnyk_ilchenko.pdf
  5. Shkurdoda, Yu. O., Pasko, O. O., Kovalenko, O. A. (2021). Fizyka. Mekhanika, molekuliarna fizyka ta termodynamika. Sumy: Sumskyi derzhavnyi universytet, 221. Available at: https://files.znu.edu.ua/files/Bibliobooks/Inshi68/0050149.pdf
  6. William, B. (2003). Cross-Cultural and Intercultural Communication. SAGE Publications, Inc, 312. Available at: https://books.google.com.ua/books?id=-5sjpr1ypmcC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
  7. Zhou, Y., Jindal-Snape, D., Topping, K., Todman, J. (2008). Theoretical models of culture shock and adaptation in international students in higher education. Studies in Higher Education, 33 (1), 63–75. https://doi.org/10.1080/03075070701794833
  8. Voitik, T. H. (2024). Znachennia metodyky vykladannia matematyky studentam vyshiv dlia vyboru maibutnoi profesii. Problemy matematychnoi osvity: vyklyky suchasnosti. Vinnytsia: VNTU, 16–17. Available at: https://press.vntu.edu.ua/index.php/vntu/catalog/book/837
  9. Busarova, T. M., Hryshechkina, T. S., Zvonarova, O. V., Semenets, H. I. (2023). Vyshcha matematyka. Matematychnyi analiz. Chastyna 1. Dnipro: UDUNT, 120. Available at: https://crust.ust.edu.ua/handle/123456789/17815
  10. Kushnir, R. M. (2003). Zahalna fizyka. Mekhanika. Molekuliarna fizyka. Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka, 404. Available at: https://physics.lnu.edu.ua/wp-content/uploads/Kushnir_Zag-fizyka.pdf

Published

2025-12-30

How to Cite

Voііtik T., Kyrylov, S., Kopeykina, T., & Shurlo, O. (2025). Application of the derivative function of a single variable in mathematics and physics courses in higher educational institutions. ScienceRise: Pedagogical Education, (4 (65), 22–26. https://doi.org/10.15587/2519-4984.2025.345337

Issue

Section

Pedagogical Education