Products of interaction of substituted 5-aminopyrazoles with α -haloketones as potential pharmaceutical agents
DOI:
https://doi.org/10.15587/2519-4852.2017.113493Keywords:
pyrazole, -haloketones, 1H-imidazo[1, 2-b]pyrazoles, synthesis, alkylation, pharmaceutical agents, NMR spectroscopy, isomerismAbstract
Aim. Optimization of reaction of substituted 5-aminopyrazoles with a-haloketones to form annealed 2,6,7-trisubstituted 1H-imidazo[1,2-b]pyrazoles.
Materials and methods of research. The methods of organic synthesis, instrumental methods of organic compound analysis were used.
Results. A scheme for the synthesis of 2,6,7-trisubstituted 1H-imidazo[1,2-b]pyrazoles by the interaction of 5-amino-4-arylsulfonyl-3-methylthiopyrazoles 1a-b with chloroacetone, phenacyl bromide and 2-chlorocyclohexanone was developed. In contrast to the previously described interaction of substituted 5-aminopyrazoles with chloro (N-aryl) acetamides proceeding exclusively with the release of N1-alkylation products, in this reaction a mixture of N1- and N2-isomeric alkylation products is formed. The ratio of isomers depends on the nature of the reagents and, according to the 1H NMR-spectroscopy, is about 60:40 %.The developed technique allows with one of the synthetic procedure to carry out N1-alkylation of 5-aminopyrazoles 1a-b and the cyclization of products 2 in imidazo[1,2-b]pyrazoles 4a-c without isolating the N2-alkylation product. The purity of the obtained compounds is proved chromatographically, the structure is confirmed by the data of 1H NMR-spectroscopy.
Conclusions. Optimized reaction of substituted 5-aminopyrazoles with a-haloketones to form annealed 2,6,7-trisubstituted 1H-imidazo[1,2-b]pyrazoles for targeted synthesis of the novel agents for the pharmaceutical practice
References
- Ansari, A., Ali, A., Asif, M., Shamsuzzaman, S. (2017). Review: biologically active pyrazole derivatives. New Journal of Chemistry, 41 (1), 16–41. doi: 10.1039/c6nj03181a
- Li, Y.-R., Li, C., Liu, J.-C., Guo, M., Zhang, T.-Y., Sun, L.-P. et. al. (2015). Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 25 (22), 5052–5057. doi: 10.1016/j.bmcl.2015.10.028
- Basha, S. S., Ramachandra Reddy, P., Padmaja, A., Padmavathi, V., Mouli, K. C., Vijaya, T. (2015). Synthesis and antimicrobial activity of 3-aroyl-4-heteroaryl pyrroles and pyrazoles. Medicinal Chemistry Research, 24 (3), 954–964. doi: 10.1007/s00044-014-1169-8
- Weston, C. E., Kramer, A., Colin, F., Yildiz, O., Baud, M. G. J., Meyer-Almes, F.-J., Fuchter, M. J. (2017). Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. ACS Infectious Diseases, 3 (2), 152–161. doi: 10.1021/acsinfecdis.6b00148
- Patil, A., Jadhav, R., Raundal, H., Sharma, L., Badgujar, R., Bobade, V. (2014). Synthesis and antifungal activities of diaryl pyrazoles carboxamide derivatives. Journal of Chemical and Pharmaceutical Research, 6 (8), 218–223.
- Lei, P., Zhang, X., Xu, Y., Xu, G., Liu, X., Yang, X. et. al. (2016). Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline. Chemistry Central Journal, 10 (1). doi: 10.1186/s13065-016-0186-8
- Bekhit, A. A., Ashour, H. M. A., Abdel Ghany, Y. S., Bekhit, A. E.-D. A., Baraka, A. (2008). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43 (3), 456–463. doi: 10.1016/j.ejmech.2007.03.030
- Ai, T., Willett, R., Williams, J., Ding, R., Wilson, D. J., Xie, J. et. al. (2017). N-(1-Benzyl-3,5-dimethyl-1H-pyrazol-4-yl)benzamides: Antiproliferative Activity and Effects on mTORC1 and Autophagy. ACS Medicinal Chemistry Letters, 8 (1), 90–95. doi: 10.1021/acsmedchemlett.6b00392
- Kaufmann, K., Romaine, I., Days, E., Pascual, C., Malik, A., Yang, L. et. al. (2013). ML297 (VU0456810), the First Potent and Selective Activator of the GIRK Potassium Channel, Displays Antiepileptic Properties in Mice. ACS Chemical Neuroscience, 4 (9), 1278–1286. doi: 10.1021/cn400062a
- Krogsgaard-Larsen, P., Stromgaard, K., Madsen, U. (2010). Textbook of Drug Design and Discovery. Florida: CRC Press, 460.
- Tkachenko, P. V., Tkachenko, E. V., Zhuravel, I. A., Kazmirchuk, V. V., Derbisbekova, U. B. (2017). Sintez i protivomikrobnaya aktivnost' 4–arilsul'fonil proizvodnykh 5–aminopirazolov. Vestnik KazNMU, 2, 307–311.
- Tkachenko, P. V., Tkachenko, O. V., Netosova, K. Y., Borisov, O. V., Zhuravel, I. O., Kazmirchuk, V. V. (2017). The synthesis and the antimicrobial activity of N1-substituted 5-amino-4-arylsulfonyl-3-N-phenylaminopyrazoles. Visnik Farmacii, 3 (91), 3–9. doi: 10.24959/nphj.17.2159
- Tkachenko, P. V., Tkachenko, O. V., Netosova, K. Y., Borisov, O. V., Zhuravel, I. O. (2017). The synthesis of the substituted 4-alkyl/arylsulfonyl-5-amino-3-alkylthiopyrazoles as promising pharmaceutical agents with the antifungal action. Visnik Farmacii, 2 (90), 25–30. doi: 10.24959/nphj.17.2158
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Pavlo Tkachenko, Olena Tkachenko, Krystyna Netosova, Oleksandr Borisov, Iryna Zhuravel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.