Review of formulation and evaluation of self-micro emulsifying drug delivery system (SMEDDS)

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.210825

Keywords:

SMEDDS (self micro emulsifying drug delivery system), GI fluids (gastrointestinal fluids), o/w (oil in water), optimization, Isotropic mixture, X-ray powder diffraction (XPRD), zeta potential, surfactant, co-surfactant

Abstract

Approximately half of the new drug applicants that reach formulation have poor water solubility. Oral delivery has been the main route of drug administration for the chronic treatment of numerous diseases. In different cases, in oral conveyance, 50 % of the medication compound is hampered because of the high lipid soluble or fat soluble of the medication itself. Around 40 % of new drug applicants show low solubility in water, which prompts poor oral bioavailability, high Intra and Intersubject changeability, and deficiency of dose proportionality

Aim of review. The main aim of this review article is to gather the information related to design and evaluation of SMEDDS. These information can be utilized to enhance the bioavailability of the poorly aqueous soluble drug for various types of orally administered drugs. In this review article, various literature are reviewed and summerised in single paper to serve as reference guide to various research scholars and researchers working on self-micro-emulsifying drug delivery systems.

Materials and Methods. To prepare this manuscript various keywords were searched in different search engine such as Google, Yahoo and Bing etc. This review article reviews the recent work done in the field of SMEDDS. It comprises review of literatures available in public domain and formulation of SMEDDS and its characterization is summarized in this article.

Result. The various strategies to developed poor aqueous soluble drug for improvement of bioavailability for example, salt development and molecular size reduction of the compound might be one technique to enhance the dissolution rate of the drug. In any case, these methods have their limitations. SMEDDS is one of the novel applications for the delivery of low water soluble and low bioavailability of drug. SMEDDS is a method to improve the aqueous solubility of the medication; SMEDDS are described as isotropic blenders of oils, surfactants, and co-surfactant. Upon slightly stir followed by dilution with distilled water, for example, gastrointestinal liquids, these techniques can define clear o/w micro emulsion. SMEDDS is first choice and key technology for developing the lipophilic drug and other different factors that chance to affect the oral bioavailability.

Conclusions. This review paper attempts to describe the preparation of SMEDDS and furthermore discusses the development of pseudo ternary phase diagram for SMEDDS. It describes the mechanism and method of preparation involved in SMEDDS. The capability of oral absorption of drug compound from the SMEDDS relies upon numerous formulation−related parameters, for example, surfactant concentration, oil/surfactant ratio, and hydrophobicity of emulsion, globule size and charge, in vitro, in vivo all of which basically characterized the ability of self-emulsification. SMEDDS are administered as unit dosage form and it also protect the degradation of drug

Author Biographies

Sanjib Bahadur, Columbia Institute of Pharmacy, Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh 493111

PhD, Associate Professor

Department of Pharmaceutics

Kamesh Yadu, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

Department of Pharmaceutics

Pragya Baghel, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

PhD, Assistant Professor

Department of Pharmaceutics

Tripti Naurange, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

Department of Pharmaceutics

Manisha Sahu, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh 493111, India

Department of Pharmaceutics

References

  1. Maurya, S. D., Arya, R. K., Rajpal, G., Dhakar, R. C. (2017). Self-micro emulsifying drug delivery systems (smedds): a review on physico-chemical and biopharmaceutical aspects. Journal of Drug Delivery and Therapeutics, 7 (3), 55–65. doi: http://doi.org/10.22270/jddt.v7i3.1453
  2. Ramya, A. R., Sudheer, P., Mohameid, A. S., Das, A. K. (2019). Design and Evaluation of a Self-Emulsifying Drug Delivery System of Aripiprazole. Indian Journal of Pharmaceutical Sciences, 81 (6), 1089–1098. doi: http://doi.org/10.36468/pharmaceutical-sciences.607
  3. Gumaste, S. G., Freire, B. O. S., Serajuddin, A. T. M. (2017). Development of solid SEDDS, VI: Effect of precoating of Neusilin® US2 with PVP on drug release from adsorbed self-emulsifying lipid-based formulations. European Journal of Pharmaceutical Sciences, 110, 124–133. doi: http://doi.org/10.1016/j.ejps.2017.02.022
  4. Ramesh, B. J., Ramu, A., Vidyadhara, S., Balakrishna, T. (2019). Design and Evaluation of Telmisartan SMEDDS for Enhancing Solubility and Dissolution Rate. International Journal of Pharmaceutical Sciences and Nanotechnology, 12 (6), 4721–4730. doi: http://doi.org/10.37285/ijpsn.2019.12.6.8
  5. Patel, M. J., Patel, S. S., Patel, N. M., Patel, M. M. (2010). A self-microemulsifying drug delivery system (SMEDDS). International Journal of Pharmaceutical Sciences Review and Research, 4 (3), 29–35. doi: http://doi.org/10.14843/jpstj.70.32
  6. Kalamkar, P., Pawar, K., Baddi, H., Thawkar, B., Yevale, R., Kale, M. (2016). A Review on “ Self Micro Emulsifying Drug Delivery System (SMEDDS ). Indian Journal of Drug, 4 (3), 361–373.
  7. Dokania, S., Joshi, A. K. (2014). Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Delivery, 22 (6), 675–690. doi: http://doi.org/10.3109/10717544.2014.896058
  8. Patel, M. H., Sawant, K. K. (2019). Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: In vitro, Caco-2 cell line and in vivo evaluation. European Journal of Pharmaceutical Sciences, 138, 105027. doi: http://doi.org/10.1016/j.ejps.2019.105027
  9. Aggarwal, G., Harikumar, S., Jaiswal, P., Singh, K. (2014). Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. International Journal of Pharmaceutical Investigation, 4 (4), 195. doi: http://doi.org/10.4103/2230-973x.143123
  10. Shakeel, F., Raish, M., Anwer, M. K., Al-Shdefat, R. (2016). Self-nanoemulsifying drug delivery system of sinapic acid: In vitro and in vivo evaluation. Journal of Molecular Liquids, 224, 351–358. doi: http://doi.org/10.1016/j.molliq.2016.10.017
  11. Bolko Seljak, K., Ilić, I. G., Gašperlin, M., Zvonar Pobirk, A. (2018). Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. International Journal of Pharmaceutics, 548 (1), 263–275. doi: http://doi.org/10.1016/j.ijpharm.2018.06.065
  12. Pandit, A., Kedar, A., Koyate, K. (2020). Hollow pessary loaded with lawsone via self-microemulsifying drug delivery system for vaginal candidiasis. Journal of Drug Delivery Science and Technology, 60, 101955. doi: http://doi.org/10.1016/j.jddst.2020.101955
  13. Reddy, S., Katyayani, T., Navatha, A., Ramya, G. (2011). Review on self micro emulsifying drug delivery systems. International Journal of Research in Pharmaceutical Sciences, 2 (3), 382–392.
  14. Akiladevi, D. N. M. (2017). Formulation And Development Of Self Emulsifying Drug Delivery System For Few Drugs. International Journal of Pharmacy and Pharmaceutical Sciences, 8 (0975–1491), 1–133.
  15. Yetukuri, K. S. P. (2012). Yetukuri and Sudheer. Internation Journal of Pharmaceutical Science and Research, 3 (10), 3550–3558.
  16. Talele, S. G., Gudsoorkar, V. R., Pharmacy, M. V. P. C. (2016). Novel Approaches for Solidification of Smedds. International Journal of pharma and bio sciences, 4, 90–101.
  17. Patil, A. S., Mahajan, H. D., Wagh, R. D., Deore, B. L., Mali, B. J. (2016). Self-micro emulsifying drug delivery system (SMDDS): a novel approach for enhancement of bioavailability. Pharma Science Monitor, 5 (1), 133–143. Available at: http://www.pharmasm.com/download1.php?articleid=712&download_file=20140320110931_20140123221316_10_amod.pdf
  18. Shah Sanket, P., Shah Mansi, D. A. Y. (2012). Self- Micro Emulsifying Drug Delivery System: A Novel Approach For Enhancement Of Oral Bioavailability Of Poorly Soluable Drugs. American Journal of PharmTech Research, 2249-3387, 194–215.
  19. Shi, C.-H., Cai, S., Zhang, X., Tang, xiaojiao, Suo, H., Yang, li, Zhao, Y. (2014). Self-microemulsifying drug-delivery system for improved oral bioavailability of 20(S)-25-methoxyl-dammarane-3beta;, 12beta;, 20-triol: preparation and evaluation. International Journal of Nanomedicine, 9, 913–920. doi: http://doi.org/10.2147/ijn.s56894
  20. Chaudhari, K. S., Akamanchi, K. G. (2019). Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz. International Journal of Pharmaceutics, 560, 205–218. doi: http://doi.org/10.1016/j.ijpharm.2019.01.065
  21. Timur, S. S., Yöyen-Ermiş, D., Esendağlı, G., Yonat, S., Horzum, U., Esendağlı, G., Gürsoy, R. N. (2019). Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 136, 138–146. doi: http://doi.org/10.1016/j.ejpb.2019.01.017
  22. Huang, W., Su, H., Wen, L., Shao, A., Yang, F., Chen, G. (2018). Enhanced anticancer effect of Brucea javanica oil by solidified self-microemulsifying drug delivery system. Journal of Drug Delivery Science and Technology, 48, 266–273. doi: http://doi.org/10.1016/j.jddst.2018.10.001
  23. Cirri, M., Roghi, A., Valleri, M., Mura, P. (2016). Development and characterization of fast-dissolving tablet formulations of glyburide based on solid self-microemulsifying systems. European Journal of Pharmaceutics and Biopharmaceutics, 104, 19–29. doi: http://doi.org/10.1016/j.ejpb.2016.04.008
  24. Janković, J., Djekic, L., Dobričić, V., Primorac, M. (2016). Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir. International Journal of Pharmaceutics, 497 (1-2), 301–311. doi: http://doi.org/10.1016/j.ijpharm.2015.11.011
  25. Chintalapudi, R., Murthy, T. E. G. K., Lakshmi, Kr., Manohar, Gg. (2015). Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine. International Journal of Pharmaceutical Investigation, 5 (4), 205. doi: http://doi.org/10.4103/2230-973x.167676
  26. Nardin, I., Köllner, S. (2019). Successful development of oral SEDDS: screening of excipients from the industrial point of view. Advanced Drug Delivery Reviews, 142, 128–140. doi: http://doi.org/10.1016/j.addr.2018.10.014
  27. Truong, D. H., Tran, T. H., Ramasamy, T., Choi, J. Y., Lee, H. H., Moon, C. et. al. (2015). Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib. AAPS PharmSciTech, 17 (2), 466–473. doi: http://doi.org/10.1208/s12249-015-0370-5
  28. Parakh, D. R., Patil, M. P., Sonawane, S. S., Kshirsagar, S. J. (2016). Application of factorial design approach in development and evaluation of self microemulsifying drug delivery system (SMEDDS) of mebendazole. Journal of Pharmaceutical Investigation, 47 (6), 507–519. doi: http://doi.org/10.1007/s40005-016-0279-3
  29. Sunazuka, Y., Ueda, K., Higashi, K., Tanaka, Y., Moribe, K. (2018). Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. International Journal of Pharmaceutics, 546 (1-2), 263–271. doi: http://doi.org/10.1016/j.ijpharm.2018.05.031
  30. Chou, Y.-C., Li, S., Ho, C.-T., Pan, M.-H. (2020). Preparation and evaluation of self-microemulsifying delivery system containing 5-demethyltangeretin on inhibiting xenograft tumor growth in mice. International Journal of Pharmaceutics, 579, 119134. doi: http://doi.org/10.1016/j.ijpharm.2020.119134
  31. Zheng, D., Lv, C., Sun, X., Wang, J., Zhao, Z. (2019). Preparation of a supersaturatable self-microemulsion as drug delivery system for ellagic acid and evaluation of its antioxidant activities. Journal of Drug Delivery Science and Technology, 53, 101209. doi: http://doi.org/10.1016/j.jddst.2019.101209
  32. Jo, K., Kim, H., Khadka, P., Jang, T., Kim, S. J., Hwang, S.-H., Lee, J. (2020). Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian Journal of Pharmaceutical Sciences, 15 (3), 336–346. doi: http://doi.org/10.1016/j.ajps.2018.11.009
  33. Shete, H., Sable, S., Tidke, P., Selkar, N., Pawar, Y., Chakraborty, A. et. al. (2015). Mono-guanidine heterolipid based SMEDDS: A promising tool for cytosolic delivery of antineoplastics. Biomaterials, 57, 116–132. doi: http://doi.org/10.1016/j.biomaterials.2015.03.040
  34. Pandey, V., Kohli, S. (2017). SMEDDS of pioglitazone: Formulation, in-vitro evaluation and stability studies. Future Journal of Pharmaceutical Sciences, 3 (1), 53–59. doi: http://doi.org/10.1016/j.fjps.2017.02.003
  35. Wu, L., Qiao, Y., Wang, L., Guo, J., Wang, G., He, W. et. al. (2015). A Self-microemulsifying Drug Delivery System (SMEDDS) for a Novel Medicative Compound Against Depression: a Preparation and Bioavailability Study in Rats. AAPS PharmSciTech, 16 (5), 1051–1058. doi: http://doi.org/10.1208/s12249-014-0280-y
  36. Akula, S., Gurram, A. K., Devireddy, S. R. (2014). Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. International Scholarly Research Notices, 2014, 1–11. doi: http://doi.org/10.1155/2014/964051
  37. Djekic, L., Janković, J., Rašković, A., Primorac, M. (2018). Semisolid self-microemulsifying drug delivery systems (SMEDDSs): Effects on pharmacokinetics of acyclovir in rats. European Journal of Pharmaceutical Sciences, 121, 287–292. doi: http://doi.org/10.1016/j.ejps.2018.06.005
  38. Gao, H., Wang, M., Sun, D., Sun, S., Sun, C., Liu, J., Guan, Q. (2017). Evaluation of the cytotoxicity and intestinal absorption of a self-emulsifying drug delivery system containing sodium taurocholate. European Journal of Pharmaceutical Sciences, 106, 212–219. doi: http://doi.org/10.1016/j.ejps.2017.06.005
  39. Akram, J., Khan, J., Asbi, A., Budiasih, S. (2014). Formulation And Development Of Self Micro- Emulsifying Drug. World Journal of Pharmaceutical Research, 3 (7), 105–124.
  40. Hintzen, F., Perera, G., Hauptstein, S., Müller, C., Laffleur, F., Bernkop-Schnürch, A. (2014). In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. International Journal of Pharmaceutics, 472 (1-2), 20–26. doi: http://doi.org/10.1016/j.ijpharm.2014.05.047
  41. Sprunk, A., Strachan, C. J., Graf, A. (2012). Rational formulation development and in vitro assessment of SMEDDS for oral delivery of poorly water soluble drugs. European Journal of Pharmaceutical Sciences, 46 (5), 508–515. doi: http://doi.org/10.1016/j.ejps.2012.04.001
  42. Rajpoot, K., Tekade, M., Pandey, V., Nagaraja, S., Youngren-Ortiz, S. R., Tekade, R. K. (2020). Self-microemulsifying drug-delivery system: ongoing challenges and future ahead. Drug Delivery Systems. Elsevier Inc., 393–454. doi: http://doi.org/10.1016/b978-0-12-814487-9.00009-0
  43. Chen, X.-Q., Ziemba, T., Huang, C., Chang, M., Xu, C., Qiao, J. X. et. al. (2018). Oral Delivery of Highly Lipophilic, Poorly Water-Soluble Drugs: Self-Emulsifying Drug Delivery Systems to Improve Oral Absorption and Enable High-Dose Toxicology Studies of a Cholesteryl Ester Transfer Protein Inhibitor in Preclinical Species. Journal of Pharmaceutical Sciences, 107 (5), 1352–1360. doi: http://doi.org/10.1016/j.xphs.2018.01.003
  44. Tung, N.-T., Tran, C.-S., Pham, T.-M.-H., Nguyen, H.-A., Nguyen, T.-L., Chi, S.-C. et. al. (2018). Development of solidified self-microemulsifying drug delivery systems containing l-tetrahydropalmatine: Design of experiment approach and bioavailability comparison. International Journal of Pharmaceutics, 537 (1-2), 9–21. doi: http://doi.org/10.1016/j.ijpharm.2017.12.027
  45. Wei, Y., Ye, X., Shang, X., Peng, X., Bao, Q., Liu, M. et. al. (2012). Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 22–28. doi: http://doi.org/10.1016/j.colsurfa.2011.12.025
  46. Cheng, G., Hu, R., Ye, L., Wang, B., Gui, Y., Gao, S. et. al. (2015). Preparation and In Vitro/In Vivo Evaluation of Puerarin Solid Self-Microemulsifying Drug Delivery System by Spherical Crystallization Technique. AAPS PharmSciTech, 17 (6), 1336–1346. doi: http://doi.org/10.1208/s12249-015-0469-8
  47. Ujhelyi, Z., Kalantari, A., Vecsernyés, M., Róka, E., Fenyvesi, F., Póka, R. et. al. (2015). The Enhanced Inhibitory Effect of Different Antitumor Agents in Self-Microemulsifying Drug Delivery Systems on Human Cervical Cancer HeLa Cells. Molecules, 20 (7), 13226–13239. doi: http://doi.org/10.3390/molecules200713226
  48. Yang, S., Gursoy, R. N., Lambert, G., Benita, S. (2004). Enhanced Oral Absorption of Paclitaxel in a Novel Self-Microemulsifying Drug Delivery System with or Without Concomitant Use of P-Glycoprotein Inhibitors. Pharmaceutical Research, 21 (2), 261–270. doi: http://doi.org/10.1023/b:pham.0000016238.44452.f1
  49. Aswar, M., Bhalekar, M., Trimukhe, A., Aswar, U. (2020). Self-microemulsifying drug delivery system (SMEDDS) of curcumin attenuates depression in olfactory bulbectomized rats. Heliyon, 6 (8), e04482. doi: http://doi.org/10.1016/j.heliyon.2020.e04482
  50. Visetvichaporn, V., Kim, K.-H., Jung, K., Cho, Y.-S., Kim, D.-D. (2020). Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). International Journal of Pharmaceutics, 573, 118772. doi: http://doi.org/10.1016/j.ijpharm.2019.118772
  51. Gumaste, S. G., Serajuddin, A. T. M. (2017). Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations. European Journal of Pharmaceutical Sciences, 110, 134–147. doi: http://doi.org/10.1016/j.ejps.2017.05.014
  52. Prachi, S., Prajapati, S. K. K. S. U., Shipra, S., Ali, A. (2012). a Review on Self Micro Emulsifying Drug Delivery System: an Approach To Enhance the Oral Bioavailability of Poorly Water Soluble Drugs. International Research Journal of Pharmacy, 3 (9), 1–6.
  53. Sha, X., Wu, J., Chen, Y., Fang, X. (2012). Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: Preparation and evaluation. International Journal of Nanomedicine, 7, 705–712. doi: http://doi.org/10.2147/ijn.s28052
  54. Joyce, P., Dening, T. J., Meola, T. R., Schultz, H. B., Holm, R., Thomas, N., Prestidge, C. A. (2019). Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Advanced Drug Delivery Reviews, 142, 102–117. doi: http://doi.org/10.1016/j.addr.2018.11.006
  55. Goyal, U., Gupta, A., Rana, A. C., Aggarwal, G. (2012). Self microemulsifying drug delivery system: A method for enhancement of bioavailability. International Journal of Pharmaceutical Sciences, 3 (1), 66–79.
  56. Milović, M., Djuriš, J., Djekić, L., Vasiljević, D., Ibrić, S. (2012). Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. International Journal of Pharmaceutics, 436 (1-2), 58–65. doi: http://doi.org/10.1016/j.ijpharm.2012.06.032
  57. Hyma, P., Abbulu, K. (2013). Formulation and characterisation of self-microemulsifying drug delivery system of pioglitazone. Biomedicine & Preventive Nutrition, 3 (4), 345–350. doi: http://doi.org/10.1016/j.bionut.2013.09.005
  58. Chen, X.-Q., Ziemba, T., Huang, C., Chang, M., Xu, C., Qiao, J. X. et. al. (2018). Oral Delivery of Highly Lipophilic, Poorly Water-Soluble Drugs: Self-Emulsifying Drug Delivery Systems to Improve Oral Absorption and Enable High-Dose Toxicology Studies of a Cholesteryl Ester Transfer Protein Inhibitor in Preclinical Species. Journal of Pharmaceutical Sciences, 107 (5), 1352–1360. doi: http://doi.org/10.1016/j.xphs.2018.01.003
  59. Shahnaz, G., Hartl, M., Barthelmes, J., Leithner, K., Sarti, F., Hintzen, F. et. al. (2011). Uptake of phenothiazines by the harvested chylomicrons ex vivo model: Influence of self-nanoemulsifying formulation design. European Journal of Pharmaceutics and Biopharmaceutics, 79 (1), 171–180. doi: http://doi.org/10.1016/j.ejpb.2011.01.025
  60. McConville, C., Friend, D. (2013). Development and characterisation of a self-microemulsifying drug delivery systems (SMEDDSs) for the vaginal administration of the antiretroviral UC-781. European Journal of Pharmaceutics and Biopharmaceutics, 83 (3), 322–329. doi: http://doi.org/10.1016/j.ejpb.2012.10.007
  61. Qureshi, M. J., Mallikarjun, C., Kian, W. G. (2015). Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian Journal of Pharmaceutical Sciences, 10 (1), 40–56. doi: http://doi.org/10.1016/j.ajps.2014.08.003
  62. Gu, M., Gong, M., Qian, Y., Yan, G. (2013). Development of a self-microemulsifying drug delivery system to enhance oral bioavailability of β-elemene in rats. Journal of Drug Delivery Science and Technology, 23 (5), 485–491. doi: http://doi.org/10.1016/s1773-2247(13)50070-0
  63. Niederquell, A., Völker, A. C., Kuentz, M. (2012). Introduction of diffusing wave spectroscopy to study self-emulsifying drug delivery systems with respect to liquid filling of capsules. International Journal of Pharmaceutics, 426 (1-2), 144–152. doi: http://doi.org/10.1016/j.ijpharm.2012.01.042
  64. Abdulkarim, M., Sharma, P. K., Gumbleton, M. (2019). Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Advanced Drug Delivery Reviews, 142, 62–74. doi: http://doi.org/10.1016/j.addr.2019.04.001
  65. Djekic, L., Jankovic, J., Čalija, B., Primorac, M. (2017). Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir. International Journal of Pharmaceutics, 528 (1-2), 372–380. doi: http://doi.org/10.1016/j.ijpharm.2017.06.028
  66. Čerpnjak, K., Pobirk, A. Z., Vrečer, F., Gašperlin, M. (2015). Tablets and minitablets prepared from spray-dried SMEDDS containing naproxen. International Journal of Pharmaceutics, 495 (1), 336–346. doi: http://doi.org/10.1016/j.ijpharm.2015.08.099
  67. Li, Q., Zhai, W., Jiang, Q., Huang, R., Liu, L., Dai, J. et. al. (2015). Curcumin–piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. International Journal of Pharmaceutics, 490 (1-2), 22–31. doi: http://doi.org/10.1016/j.ijpharm.2015.05.008
  68. Krstić, M., Popović, M., Dobričić, V., Ibrić, S. (2015). Influence of Solid Drug Delivery System Formulation on Poorly Water-Soluble Drug Dissolution and Permeability. Molecules, 20 (8), 14684–14698. doi: http://doi.org/10.3390/molecules200814684
  69. Shanmugam, S., Im, H. T., Sohn, Y. T., Kim, Y.-I., Park, J.-H., Park, E.-S., Woo, J. S. (2015). Enhanced oral bioavailability of paclitaxel by solid dispersion granulation. Drug Development and Industrial Pharmacy, 41 (11), 1864–1876. doi: http://doi.org/10.3109/03639045.2015.1018275
  70. Kanwal, T., Kawish, M., Maharjan, R., Ghaffar, I., Ali, H. S., Imran, M. et. al. (2019). Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. Journal of Molecular Liquids, 289, 111098. doi: http://doi.org/10.1016/j.molliq.2019.111098
  71. Kumar, R., Khursheed, R., Kumar, R., Awasthi, A., Sharma, N., Khurana, S. et. al. (2019). Self-nanoemulsifying drug delivery system of fisetin: Formulation, optimization, characterization and cytotoxicity assessment. Journal of Drug Delivery Science and Technology, 54, 101252. doi: http://doi.org/10.1016/j.jddst.2019.101252
  72. Čerpnjak, K., Zvonar, A., Vrečer, F., Gašperlin, M. (2015). Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: The effect of the polysaccharide carrier and naproxen concentration. International Journal of Pharmaceutics, 485 (1-2), 215–228. doi: http://doi.org/10.1016/j.ijpharm.2015.03.015
  73. Garg, V., Kaur, P., Singh, S. K., Kumar, B., Bawa, P., Gulati, M., Yadav, A. K. (2017). Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. European Journal of Pharmaceutical Sciences, 109, 297–315. doi: http://doi.org/10.1016/j.ejps.2017.08.022
  74. Gupta, S., Chavhan, S., Sawant, K. K. (2011). Self-nanoemulsifying drug delivery system for adefovir dipivoxil: Design, characterization, in vitro and ex vivo evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392 (1), 145–155. doi: http://doi.org/10.1016/j.colsurfa.2011.09.048
  75. Kumar, B., Garg, V., Singh, S., Pandey, N. K., Bhatia, A., Prakash, T. et. al. (2018). Impact of spray drying over conventional surface adsorption technique for improvement in micromeritic and biopharmaceutical characteristics of self-nanoemulsifying powder loaded with two lipophilic as well as gastrointestinal labile drugs. Powder Technology, 326, 425–442. doi: http://doi.org/10.1016/j.powtec.2017.12.005
  76. Silva, L. A. D., Almeida, S. L., Alonso, E. C. P., Rocha, P. B. R., Martins, F. T., Freitas, L. A. P. et. al. (2018). Preparation of a solid self-microemulsifying drug delivery system by hot-melt extrusion. International Journal of Pharmaceutics, 541 (1-2), 1–10. doi: http://doi.org/10.1016/j.ijpharm.2018.02.020
  77. Parmar, N., Singla, N., Amin, S., Kohli, K. (2011). Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids and Surfaces B: Biointerfaces, 86 (2), 327–338. doi: http://doi.org/10.1016/j.colsurfb.2011.04.016
  78. Inugala, S., Eedara, B. B., Sunkavalli, S., Dhurke, R., Kandadi, P., Jukanti, R., Bandari, S. (2015). Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences, 74, 1–10. doi: http://doi.org/10.1016/j.ejps.2015.03.024
  79. Shakeel, F., Raish, M., Anwer, M. K., Al-Shdefat, R. (2016). Self-nanoemulsifying drug delivery system of sinapic acid: In vitro and in vivo evaluation. Journal of Molecular Liquids, 224, 351–358. doi: http://doi.org/10.1016/j.molliq.2016.10.017
  80. Kuentz, M. (2011). Oral self-emulsifying drug delivery systems, from biopharmaceutical to technical formulation aspects. Journal of Drug Delivery Science and Technology, 21 (1), 17–26. doi: http://doi.org/10.1016/s1773-2247(11)50002-4
  81. Kalam, M. A., Raish, M., Ahmed, A., Alkharfy, K. M., Mohsin, K., Alshamsan, A. et. al. (2017). Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. Materials Science and Engineering: C, 76, 319–329. doi: http://doi.org/10.1016/j.msec.2017.03.088
  82. Aloisio, C., Bueno, M. S., Ponte, M. P., Paredes, A., Palma, S. D., Longhi, M. (2019). Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Therapeutic Delivery, 10 (10), 626–641. doi: http://doi.org/10.4155/tde-2019-0054
  83. Balata, G., Eassa, E., Shamrool, H., Zidan, S., Abdo Rehab, M. (2016). Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Design, Development and Therapy, 10, 117–128. doi: http://doi.org/10.2147/dddt.s95905
  84. Dhumal, D. M., Akamanchi, K. G. (2018). Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element. International Journal of Pharmaceutics, 541 (1-2), 48–55. doi: http://doi.org/10.1016/j.ijpharm.2018.02.030
  85. Mekjaruskul, C., Yang, Y.-T., Leed, M. G. D., Sadgrove, M. P., Jay, M., Sripanidkulchai, B. (2013). Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 445 (1-2), 1–11. doi: http://doi.org/10.1016/j.ijpharm.2013.01.052
  86. Kheawfu, K., Pikulkaew, S., Rades, T., Müllertz, A., Okonogi, S. (2018). Development and characterization of clove oil nanoemulsions and self-microemulsifying drug delivery systems. Journal of Drug Delivery Science and Technology, 46, 330–338. doi: http://doi.org/10.1016/j.jddst.2018.05.028
  87. Ishak, R. A. H., Osman, R. (2015). Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity. International Journal of Pharmaceutics, 485 (1-2), 249–260. doi: http://doi.org/10.1016/j.ijpharm.2015.03.019
  88. Vasconcelos, T., Marques, S., Sarmento, B. (2018). Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 123, 1–8. doi: http://doi.org/10.1016/j.ejpb.2017.11.003
  89. Christiansen, M. L., Holm, R., Abrahamsson, B., Jacobsen, J., Kristensen, J., Andersen, J. R., Müllertz, A. (2016). Effect of food intake and co-administration of placebo self-nanoemulsifying drug delivery systems on the absorption of cinnarizine in healthy human volunteers. European Journal of Pharmaceutical Sciences, 84, 77–82. doi: http://doi.org/10.1016/j.ejps.2016.01.011
  90. Kauss, T., Gaubert, A., Tabaran, L., Tonelli, G., Phoeung, T., Langlois, M.-H. et. al. (2018). Development of rectal self-emulsifying suspension of a moisture-labile water-soluble drug. International Journal of Pharmaceutics, 536 (1), 283–291. doi: http://doi.org/10.1016/j.ijpharm.2017.11.067
  91. Kadu, P. J., Kushare, S. S., Thacker, D. D., Gattani, S. G. (2010). Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharmaceutical Development and Technology, 16 (1), 65–74. doi: http://doi.org/10.3109/10837450903499333
  92. Baghel, P., Roy, A., Verma, S., Satapathy, T., Bahadur, S. (2020). Amelioration of lipophilic compounds in regards to bioavailability as self-emulsifying drug delivery system (SEDDS). Future Journal of Pharmaceutical Sciences, 6 (1). doi: http://doi.org/10.1186/s43094-020-00042-0
  93. Yi, T., Wan, J., Xu, H., Yang, X. (2008). A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 70 (2), 439–444. doi: http://doi.org/10.1016/j.ejpb.2008.05.001
  94. Patel, D., Sawant, K. K. (2007). Oral Bioavailability Enhancement of Acyclovir by Self-Microemulsifying Drug Delivery Systems (SMEDDS). Drug Development and Industrial Pharmacy, 33 (12), 1318–1326. doi: http://doi.org/10.1080/03639040701385527
  95. Shen, H., Zhong, M. (2006). Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. Journal of Pharmacy and Pharmacology, 58 (9), 1183–1191. doi: http://doi.org/10.1211/jpp.58.9.0004
  96. Singh, A. K., Chaurasiya, A., Awasthi, A., Mishra, G., Asati, D., Khar, R. K., Mukherjee, R. (2009). Oral Bioavailability Enhancement of Exemestane from Self-Microemulsifying Drug Delivery System (SMEDDS). AAPS PharmSciTech, 10 (3), 906–916. doi: http://doi.org/10.1208/s12249-009-9281-7
  97. Truong, D. H., Tran, T. H., Ramasamy, T., Choi, J. Y., Lee, H. H., Moon, C. et. al. (2015). Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib. AAPS PharmSciTech, 17 (2), 466–473. doi: http://doi.org/10.1208/s12249-015-0370-5
  98. Xu, Y., Wang, Q., Feng, Y., Firempong, C. K., Zhu, Y., Omari-Siaw, E. et. al. (2016). Enhanced oral bioavailability of [6]-Gingerol-SMEDDS: Preparation, in vitro and in vivo evaluation. Journal of Functional Foods, 27, 703–710. doi: http://doi.org/10.1016/j.jff.2016.10.007
  99. Mahmood, A., Bernkop-Schnürch, A. (2019). SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Advanced Drug Delivery Reviews, 142, 91–101. doi: http://doi.org/10.1016/j.addr.2018.07.001
  100. Kazi, M., Al-Swairi, M., Ahmad, A., Raish, M., Alanazi, F. K., Badran, M. M. et. al. (2019). Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Poorly Water-Soluble Talinolol: Preparation, in vitro and in vivo Assessment. Frontiers in Pharmacology, 10. doi: http://doi.org/10.3389/fphar.2019.00459
  101. Peltier, S., Oger, J.-M., Lagarce, F., Couet, W., Benoît, J.-P. (2006). Enhanced Oral Paclitaxel Bioavailability After Administration of Paclitaxel-Loaded Lipid Nanocapsules. Pharmaceutical Research, 23 (6), 1243–1250. doi: http://doi.org/10.1007/s11095-006-0022-2

Downloads

Published

2020-08-31

How to Cite

Bahadur, S., Yadu, K., Baghel, P., Naurange, T., & Sahu, M. (2020). Review of formulation and evaluation of self-micro emulsifying drug delivery system (SMEDDS). ScienceRise: Pharmaceutical Science, (4 (26), 25–35. https://doi.org/10.15587/2519-4852.2020.210825

Issue

Section

Pharmaceutical Science