Determination of composition of fatty acids in Saponaria officinalis L.

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.224671

Keywords:

Saponaria officinalis L., herb, roots, fatty acids, linolenic acid, linoleic acid, GC/MS

Abstract

Treatment using medicinal plants with a long history of use is of interest to our society. These plants include Saponaria officinalis L., as well commonly known as common soapwort belongs to the family Caryophyllaceae. The herb and roots of this plant used as a blood purifier, an expectorant in bronchitis, diaphoretic and diuretic, for skin diseases, to increase bile flow. The plant contains various secondary metabolites, but there is no information on the fatty acids composition of Saponaria officinalis L. herb and roots.

The aim. The aim of the present study was to determine the qualitative composition and quantitative content of fatty acids by gas chromatography/mass spectrometry method (GC/MS) in Saponaria officinalis L. herb and roots.

Materials and methods. The determination of fatty acids composition of Saponaria officinalis L. herb and roots were carried out by gas chromatograph Agilent 6890N (Agilent Technologies, USA).

Results. The research of Saponaria officinalis L. herb showed a mixture of unsaturated (1.9 mg/g) and saturated (1.27 mg/g) fatty acids. The main components of this raw material were linolenic (1.15 mg/g), linoleic (0.75 mg/g) and heneicosylic (0.38 mg/g) acids. The main components of this raw material were palmitic (0.38 mg/g), linoleic (0.16 mg/g) and linolenic (0.09 mg/g) acids.

Conclusions. As a result of Saponaria officinalis L. study, the presence of fatty acids is established in herb and roots. Using the GC/MS method determined the qualitative composition and quantitative content of fatty acids in study raw material. Twelve fatty acids were determined in the herb of Saponaria officinalis L. The dominant fatty acids in the studied raw material were linolenic and linoleic acids, their content was 1.15 mg/g and 0.75 mg/g, respectively. Nine fatty acids were determined in the Saponaria officinalis L. roots. The palmitic acid prevailed among fatty acids, it is content was 0.38 mg/g. Our findings suggest that Saponaria officinalis L. is a promising plant because of the important role of fatty acids in different biological processes

Author Biographies

Liliia Budniak, І. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

PhD, Assistant

Department of Pharmacy Management, Economics and Technology

Liudmyla Slobodianiuk, І. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

PhD, Assistant

Department of Pharmacognosy and Medical Botany

Svitlana Marchyshyn, І. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmacognosy and Medical Botany

Liliya Kostyshyn, Bukovinian State Medical University

Assistant

Department of Pharmaceutical Botany and Pharmacognosy

Oleksandrа Horoshko, Bukovinian State Medical University

PhD, Associate Professor

Department of Pharmaceutical Botany and Pharmacognosy

References

  1. Slobodianiuk, L., Budniak, L., Marchyshyn, S., Basaraba, R. (2020). Investigation of the hepatoprotective effect of the common cat’s foot herb dry extract. PharmacologyOnLine, 3, 310–318.
  2. Pavela, R. (2016). Extract from the roots of Saponaria officinalis as a potential acaricide against Tetranychus urticae. Journal of Pest Science, 90 (2), 683–692. doi: http://doi.org/10.1007/s10340-016-0828-6
  3. Lu, Y., Van, D., Deibert, L., Bishop, G., Balsevich, J. (2015). Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry, 113, 108–120. doi: http://doi.org/10.1016/j.phytochem.2014.11.021
  4. Mustafa, K., Hasan, O. Zccedil Elik. (2011). Economic importance of Gypsophila L., Ankyropetalum Fenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. African Journal of Biotechnology, 10 (47), 9533–9541. doi: http://doi.org/10.5897/ajb10.2500
  5. Subbarayappa, B. V. (2001). The roots of ancient medicine: an historical outline. Journal of Biosciences, 26 (2), 135–143. doi: http://doi.org/10.1007/bf02703637
  6. Talluri, M. R., Gummadi, V. P., Battu, G. R. (2018). Chemical Composition and Hepatoprotective Activity of Saponaria officinalis on Paracetamol-Induced Liver Toxicity in Rats. Pharmacognosy Journal, 10 (6s), s129–s134. doi: http://doi.org/10.5530/pj.2018.6s.24
  7. Oleszek, W., Naidu, A. S. (Ed.) (2000). Saponins. Natural Food Antimicrobial System. CRC Press, Inc., 295–324. doi: http://doi.org/10.1201/9781420039368.ch11
  8. Moniuszko-Szajwaj, B., Pecio, Ł., Kowalczyk, M., Simonet, A. M., Macias, F. A., Szumacher-Strabel, M. et. al. (2013). New Triterpenoid Saponins from the Roots of Saponaria officinalis. Natural Product Communications, 8 (12), 1687–1690. doi: http://doi.org/10.1177/1934578x1300801207
  9. Jia, Z., Koike, K., Sahu, N. P., Nikaido, T.; Atta-ur-Rahman (Ed.) (2002). Triterpenoid saponins from Caryophyllaceae family. Studies in Natural Products Chemistry, Bioactive Natural Products. Amsterdam: Elsevier, 26, 3–61. doi: http://doi.org/10.1016/s1572-5995(02)80004-7
  10. Böttger, S., Melzig, M. F. (2011). Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. Phytochemistry Letters, 4 (2), 59–68. doi: http://doi.org/10.1016/j.phytol.2010.08.003
  11. Petrović, G. M., Ilić, M. D., Stankov-Jovanović, V. P., Stojanović, G. S., Jovanović, S. Č. (2017). Phytochemical analysis of Saponaria officinalis L. shoots and flowers essential oils. Natural Product Research, 32 (3), 331–334. doi: http://doi.org/10.1080/14786419.2017.1350668
  12. Abdolreza, N. (2013). Antibacterial effects of Saponaria officinalis extracts against avian pathogenic Escherichia coli (APEC). African Journal of Agricultural Research, 8 (18), 2068–2071. doi: http://doi.org/10.5897/ajar11.1390
  13. Czaban, J., Mołdoch, J., Wróblewska, B., Szumacher-Strabel, M., Cieślak, A., Oleszek, W. et. al. (2013). Effect of triterpenoid saponins of field scabious, alfalfa, red clover and common soapwort on growth of Gaeumannomyces graminis var. tritici and Fusarium culmorum. Allelopathy Journal, 32, 79–90.
  14. Budniak, L., Slobodianiuk, L., Marchyshyn, S., Klepach, P., Honcharuk, Ya. (2021). Determination of carbohydrates content in Gentiana cruciata L. by GC/MS method. International Journal of Applied Pharmaceutics, 13 (1), 124–128. doi: http://doi.org/10.22159/ijap.2021v13i1.39820
  15. Budniak, L., Slobodianiuk, L., Marchyshyn, S., Demydiak, O. (2020). Determination of Arnica foliosa Nutt. fatty acids content by GC/MS method. ScienceRise: Pharmaceutical Science, 6 (28), 14–18. doi: http://doi.org/10.15587/2519-4852.2020.216474
  16. Marchyshyn, S., Budniak, L., Slobodianiuk, L., Ivasiuk, I. (2021). Determination of carbohydrates and fructans content in Cyperus esculentus L. Pharmacia, 68 (1), 211–216. doi: http://doi.org/10.3897/pharmacia.68.e54762
  17. Marchyshyn, S., Slobodianiuk, L., Budniak, L., Skrynchuk, O. (2021). Analysis of carboxylic acids of Crambe cordifolia Steven. Pharmacia, 68 (1), 15–21. doi: http://doi.org/10.3897/pharmacia.68.e56715
  18. Iosypenko, O. O., Kyslychenko, V. S., Omelchenko, Z. I., Burlaka, I. S. (2019). Fatty acid composition of vegetable marrows and zucchini leaves. Pharmacia, 66 (4), 201–207. doi: http://doi.org/10.3897/pharmacia.66.e37893
  19. Watson, K. S., Boukhloufi, I., Bowerman, M., Parson, S. H. (2021). The Relationship between Body Composition, Fatty Acid Metabolism and Diet in Spinal Muscular Atrophy. Brain Sciences, 11 (2), 131. doi: http://doi.org/10.3390/brainsci11020131
  20. Brown, T. J., Brainard, J., Song, F., Wang, X., Abdelhamid, A., Hooper, L. (2019). Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ, 366, l4697. doi: http://doi.org/10.1136/bmj.l4697
  21. Kaur, N., Chugh, V., Gupta, A. K. (2012). Essential fatty acids as functional components of foods- a review. Journal of Food Science and Technology, 51 (10), 2289–2303. doi: http://doi.org/10.1007/s13197-012-0677-0
  22. Blondeau, N., Lipsky, R. H., Bourourou, M., Duncan, M. W., Gorelick, P. B., Marini, A. M. (2015). Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties – Ready for Use in the Stroke Clinic? BioMed Research International, 2015, 1–8. doi: http://doi.org/10.1155/2015/519830
  23. Karpe, F., Dickmann, J. R., Frayn, K. N. (2011). Fatty Acids, Obesity, and Insulin Resistance: Time for a Reevaluation. Diabetes, 60 (10), 2441–2449. doi: http://doi.org/10.2337/db11-0425
  24. Sears, B., Perry, M. (2015). The role of fatty acids in insulin resistance. Lipids in Health and Disease, 14 (1). doi: http://doi.org/10.1186/s12944-015-0123-1
  25. Leontiiev, B., Khvorost, O., Fedchenkova, Yu. (2019). Fatty acids in the components of Viburnum opulus fruit. Norwegian Journal of development of the International Science, 29, 59–61.

Downloads

Published

2021-02-27

How to Cite

Budniak, L., Slobodianiuk, L., Marchyshyn, S., Kostyshyn, L., & Horoshko, O. (2021). Determination of composition of fatty acids in Saponaria officinalis L. ScienceRise: Pharmaceutical Science, (1 (29), 25–30. https://doi.org/10.15587/2519-4852.2021.224671

Issue

Section

Pharmaceutical Science