Determination of carboxylic acids content in the herbal mixtures by HPLC

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.229132

Keywords:

herbal mixtures, carboxylic acids, high performance liquid chromatography, diabetes mellitus, phytotherapy, isocitric acid, succinic acid, fumaric acid

Abstract

The aim of the study was to research the qualitative composition and to investigate the quantitative content of some carboxylic acids in the herbal mixtures with established hypoglycemic, hypolipidemic and antioxidant activity in previous studies in vivo.

Materials and methods. Studies of carboxylic acid content in the herbal mixtures were performed by HPLC analysis using Agilent Technologies 1200 liquid chromatograph (USA). Identification and quantitative analysis were performed using standard solutions of carboxylic compounds (tartaric, pyruvic, isocitric, citric, succinic and fumaric acids).

Conclusions. HPLC analysis of five samples of the herbal mixture with antidiabetic activity showed the presence of six carboxylic acids. The dominant acid in all samples was isocitric acid. Among the most important for the prevention and treatment of diabetes, high levels of succinic and fumaric acids have been identified and established. The obtained data indicate a correlation between the phytochemical composition of the studied herbal mixtures and their pharmacodynamics, which was previously established

Author Biographies

Alona Savych, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

PhD, Assistant Professor

Department of Pharnacognosy with Medical Botany

Svitlana Marchyshyn, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

Doctor of Pharmaceutical Science, Professor

Department of Pharnacognosy with Medical Botany

Roksolana Basaraba, Bukovinian State Medical University

PhD, Assistant

Department of Pharmacy

Liubomyr Kryskiw, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine

PhD, Senior Lecturer

Department of Pharmaceutical Chemistry

References

  1. American Diabetes Association (2020). Standards of medical care in diabetes. Diabetes care, 43, 1212.
  2. International Diabetes Federation. (2019). IDF Diabetes Atlas. Brussels. Available at: https://www.diabetesatlas.org
  3. Governa, P., Baini, G., Borgonetti, V., Cettolin, G., Giachetti, D., Magnano, A. et. al. (2018). Phytotherapy in the Management of Diabetes: A Review. Molecules, 23 (1), 105. doi: http://doi.org/10.3390/molecules23010105
  4. Kooti, W., Farokhipour, M., Asadzadeh, Z., Ashtary-Larky, D., Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electronic Physician, 8 (1), 1832–1842. doi: http://doi.org/10.19082/1832
  5. Savych, A., Marchyshyn, S., Basaraba, R. (2020). Determination of fatty acid composition content in the herbal antidiabetic collections. Pharmacia, 67 (3), 153–159. doi: http://doi.org/10.3897/pharmacia.67.e51812
  6. Savych, A., Marchyshyn, S., Kozyr, H., Yarema, N. (2021). Determination of inulin in the herbal mixtures by GC-MS method. Pharmacia, 68 (1), 181–187. doi: http://doi.org/10.3897/pharmacia.68.e55051
  7. Savych, A., Marchyshyn, S., Harnyk, M., Kudria, V., Ocheretniuk, A. (2021). Determination of amino acids content in two samples of the plant mixtures by GC-MS. Pharmacia, 68 (1), 283–289. doi: http://doi.org/10.3897/pharmacia.68.e63453
  8. Marchyshyn, S., Polonets, O., Savych, A., Nakonechna, S. (2020). Determination of carbohydrates of Chrysanthemum morifolium L. leaves and flowers by GC-MS. Pharmakeftiki Journal, 32 (4), 202–212.
  9. Savych, A., Marchyshyn, M., Basaraba, R., Lukanyuk, M. (2020). Antihyperglycemic, hypolipidemic and antioxidant properties of the herbal mixtures in dexamethasone-induced insulin resistant rats. PharmacologyOnLine, 2, 73–82.
  10. Savych, A., Marchyshyn, S., Basaraba, R. (2020). Screening study of hypoglycemic activity of the herbal mixtures (message 1). ScienceRise: Pharmaceutical Science, 4 (26), 40–46. doi: http://doi.org/10.15587/2519-4852.2020.210734
  11. Ucar, F. B., Celik, G., Akpinar, O., Corbaci, C. (2014). Production of citric and isocitric acid by Yarrowia lipolytica strains grown on different carbon sources. Turkish Journal of Biochemistry, 39 (3), 285–290. doi: http://doi.org/10.5505/tjb.2014.92005
  12. Chi, Z., Wang, Z.-P., Wang, G.-Y., Khan, I., Chi, Z.-M. (2014). Microbial biosynthesis and secretion ofl-malic acid and its applications. Critical Reviews in Biotechnology, 36 (1), 99–107. doi: http://doi.org/10.3109/07388551.2014.924474
  13. Ives, S. J., Zaleski, K. S., Slocum, C., Escudero, D., Sheridan, C., Legesse, S. et. al. (2020). The effect of succinic acid on the metabolic profile in high‐fat diet‐induced obesity and insulin resistance. Physiological Reports, 8 (21). doi: http://doi.org/10.14814/phy2.14630
  14. Ferro, A., Carbone, E., Zhang, J., Marzouk, E., Villegas, M., Siegel, A. et. al. (2017). Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLOS ONE, 12 (12), e0188425. doi: http://doi.org/10.1371/journal.pone.0188425
  15. Kronenberg, J., Pars, K., Brieskorn, M., Prajeeth, C., Heckers, S., Schwenkenbecher, P. et. al. (2019). Fumaric Acids Directly Influence Gene Expression of Neuroprotective Factors in Rodent Microglia. International Journal of Molecular Sciences, 20 (2), 325. doi: http://doi.org/10.3390/ijms20020325
  16. Gill, A. J., Kolson, D. L. (2013). Dimethyl Fumarate Modulation of Immune and Antioxidant Responses: Application to HIV Therapy. Critical Reviews in Immunology, 33 (4), 307–359. doi: http://doi.org/10.1615/critrevimmunol.2013007247
  17. WHO Guidelines on good agricultural and mixture practices (GACP) for medicinal plants (2003). World Health Organization Geneva, Switzerland, 72.
  18. Agius, C., von Tucher, S., Poppenberger, B., Rozhon, W. (2018). Quantification of sugars and organic acids in tomato fruits. MethodsX, 5, 537–550. doi: http://doi.org/10.1016/j.mex.2018.05.014
  19. Ergönül, P. G., Nergiz, C. (2010). Determination of organic acids in olive fruit by HPLC. Czech Journal of Food Sciences, 28 (3), 202–205. doi: http://doi.org/10.17221/1379-cjfs
  20. Beloborodova, N., Pautova, A., Sergeev, A., Fedotcheva, N. (2019). Serum Levels of Mitochondrial and Microbial Metabolites Reflect Mitochondrial Dysfunction in Different Stages of Sepsis. Metabolites, 9 (10), 196. doi: http://doi.org/10.3390/metabo9100196
  21. Lillefosse, H. H., Clausen, M. R., Yde, C. C., Ditlev, D. B., Zhang, X., Du, Z.-Y. et. al. (2014). Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion? Journal of Proteome Research, 13 (5), 2560–2570. doi: http://doi.org/10.1021/pr500039t
  22. Gothai, S., Ganesan, P., Park, S.-Y., Fakurazi, S., Choi, D.-K., Arulselvan, P. (2016). Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients, 8 (8), 461. doi: http://doi.org/10.3390/nu8080461
  23. Chapela, S. P., Burgos, I., Congost, C., Canzonieri, R., Muryan, A., Alonso, M., Stella, C. A. (2018). Parenteral Succinate Reduces Systemic ROS Production in Septic Rats, but It Does Not Reduce Creatinine Levels. Oxidative Medicine and Cellular Longevity, 2018, 1–6. doi: http://doi.org/10.1155/2018/1928945
  24. Dickel, H., Bruckner, T., Höxtermann, S., Dickel, B., Trinder, E., Altmeyer, P. (2019). Fumaric acid ester‐induced T‐cell lymphopenia in the real‐life treatment of psoriasis. Journal of the European Academy of Dermatology and Venereology, 33 (5), 893–905. doi: http://doi.org/10.1111/jdv.15448
  25. Li, S., Vaziri, N. D., Swentek, L., Takasu, C., Vo, K., Stamos, M. J. et. al. (2021). Prevention of Autoimmune Diabetes in NOD Mice by Dimethyl Fumarate. Antioxidants, 10 (2), 193. doi: http://doi.org/10.3390/antiox10020193
  26. Adam, J., Ramracheya, R., Chibalina, M. V., Ternette, N., Hamilton, A., Tarasov, A. I. et. al. (2017). Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes. Cell Reports, 20 (13), 3135–3148. doi: http://doi.org/10.1016/j.celrep.2017.08.093
  27. Dickel, H., Bruckner, T., Altmeyer, P. (2018). Long-term real-life safety profile and effectiveness of fumaric acid esters in psoriasis patients: a single-centre, retrospective, observational study. Journal of the European Academy of Dermatology and Venereology, 32 (10), 1710–1727. doi: http://doi.org/10.1111/jdv.15019

Downloads

Published

2021-04-30

How to Cite

Savych, A., Marchyshyn, S., Basaraba, R., & Kryskiw, L. (2021). Determination of carboxylic acids content in the herbal mixtures by HPLC. ScienceRise: Pharmaceutical Science, (2 (30), 33–39. https://doi.org/10.15587/2519-4852.2021.229132

Issue

Section

Pharmaceutical Science