Low-dose digoxin enhances the anticonvulsive potential of carbamazepine and lamotrigine in chemo-induced seizures with different neurochemical mechanisms

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.249375

Keywords:

anti-epileptic drugs, digoxin, adjuvant, chemo-induced seizures, mice

Abstract

"Non-antiepileptic" drugs have a strong potential as adjuvants in multidrug-resistant epilepsy treatment. In previous study the influence of low doses of digoxin, which do not affect the myocardium, on the anticonvulsant potential of classical commonly used anti-epileptic drugs under conditions of seizures, induced by pentylenetetrazole and maximal electroshock, has been investigated.

The aim of the study was to investigate the influence of digoxin at a sub-cardiotonic dose on the anticonvulsant potential of carbamazepine and lamotrigine in experimental seizures with different neurochemical mechanisms.

Material and methods: A total of 192 random-bred male albino mice weighting 22–25 g were used. Carbamazepine and lamotrigine were administered intragastrically in conditionally effective (ED50) and sub-effective (½ ED50) doses: carbamazepine at doses of 100 and 50 mg/kg; lamotrigine at doses of 25 and 12.5 mg/kg. Digoxin was administered subcutaneously at a sub-cardiotonic dose of 0.8 mg/kg as an adjuvant to carbamazepine and lamotrigine in ½ ED50. Picrotoxin (2.5 mg/kg subcutaneously); thiosemicarbazide (25 mg/kg intraperitoneally); strychnine (1.2 mg/kg subcutaneously); camphor (1000 mg/kg intraperitoneally) were used as convulsant agents.

Results: It was found that digoxin not only has its own permanent anticonvulsant effect on different models of paroxysms with different neurochemical mechanisms of development, but also significantly enhances the anticonvulsant potential of carbamazepine (to a lesser extent – lamotrigine) regardless of the pathogenesis of experimental paroxysms.

Conclusion: Based on the results, it can be concluded that digoxin has a high potential as an adjuvant medicine in complex epilepsy treatment because it enhances the efficiency of low-dose traditional anticonvulsants carbamazepine and lamotrigine

Author Biographies

Vadim Tsyvunin, National University of Pharmacy

PhD, Assistant

Department of Pharmacology and Pharmacotherapy

Sergiy Shtrygol’, National University of Pharmacy

Doctor of Medical Sciences, Professor

Department of Pharmacology and Pharmacotherapy

Ihnat Havrylov, National University of Pharmacy

Postgraduate Student

Department of Pharmacology and Pharmacotherapy

Diana Shtrygol’, V. N. Karazin Kharkiv National University

PhD, Associate Professor

Department of Neurology, Psychiatry, Narcology and Medical Psychology

School of Medicine

References

  1. Perucca, E. (2019). Antiepileptic drugs: evolution of our knowledge and changes in drug trials. Epileptic disorders, 21 (4), 319–329.
  2. Löscher, W., Klein, P. (2021). The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs, 35 (9), 935–963. doi: http://doi.org/10.1007/s40263-021-00827-8
  3. Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., Villanueva, V. (2018). The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia, 59 (12), 2179–2193. doi: http://doi.org/10.1111/epi.14596
  4. Pérez-Pérez, D., Frías-Soria, C. L., Rocha, L. (2021). Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy & Behavior, 121. doi: http://doi.org/10.1016/j.yebeh.2019.07.031
  5. Łukawski, K., Czuczwar, S. J. (2021). Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opinion on Drug Metabolism & Toxicology, 17 (9), 1075–1090. doi: http://doi.org/10.1080/17425255.2021.1959912
  6. Borowicz, K. K., Banach, M. (2014). Antiarrhythmic drugs and epilepsy. Pharmacological Reports, 66 (4), 545–551. doi: http://doi.org/10.1016/j.pharep.2014.03.009
  7. Zeiler, F. A., Zeiler, K. J., Kazina, C. J., Teitelbaum, J., Gillman, L. M., West, M. (2015). Lidocaine for status epilepticus in adults. Seizure, 31, 41–48. doi: http://doi.org/10.1016/j.seizure.2015.07.003
  8. Elgarhi, R., Shehata, M. M., Abdelsameea, A. A., Salem, A. E. (2020). Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mice. Neurochemical Research, 45 (8), 1913–1919. doi: http://doi.org/10.1007/s11064-020-03054-7
  9. Scicchitano, F., Constanti, A., Citraro, R., Sarro, G., Russo, E. (2015). Statins and epilepsy: preclinical studies, clinical trials and statin-anticonvulsant drug interactions. Current Drug Targets, 16 (7), 747–756. doi: http://doi.org/10.2174/1389450116666150330114850
  10. Markova, I. V., Mikhailov, I. B., Guzeva, V. I. (1991). Digoksin-aktivnoe protivoépilepticheskoe sredstvo. Farmakologiia i toksikologiia, 54 (5), 52–54.
  11. Shtrygol, S. Yu., Shtrygol, D. V. (2010). Digoksin kak protivoepilepticheskoe sredstvo u detei (kliniko-eksperimentalnoe issledovanie) Ukrainskyi medychnyi almanakh, 13 (4), 164.
  12. Tsyvunin, V., Shtrygol’, S., Shtrygol’, D. (2020). Digoxin enhances the effect of antiepileptic drugs with different mechanism of action in the pentylenetetrazole-induced seizures in mice. Epilepsy Research, 167. doi: http://doi.org/10.1016/j.eplepsyres.2020.106465
  13. Tsyvunin, V., Shtrygol’, S., Shtrygol’, D., Mishchenko, M., Kapelka, I., Taran, A. (2021). Digoxin potentiates the anticonvulsant effect of carbamazepine and lamotrigine against experimental seizures in mice. Thai Journal of Pharmaceutical Sciences, 45 (3), 165–171.
  14. Lidster, K., Jefferys, J. G., Blümcke, I., Crunelli, V., Flecknell, P., Frenguelli, B. G. et. al. (2016). Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 260, 2–25. doi: http://doi.org/10.1016/j.jneumeth.2015.09.007
  15. Kallman, M. J.; Hock, F. J. (Ed.) (2016). Anti-Epileptic Activity. Drug Discovery and Evaluation: Pharmacological Assays. Switzerland: Springer International Publishing, 1215–1306. doi: http://doi.org/10.1007/978-3-319-05392-9_28
  16. Mironov, A. N., Bunyatyan, N. D., Vasileva A. N. (2012). Rukovodstvo po provedeniiu doklinicheskih issledovanii lekarstvennyh sredstv. Moscow: Grif and K., 235–250.
  17. Duveau, V., Pouyatos, B., Bressand, K., Bouyssières, C., Chabrol, T., Roche, Y. et. al. (2016). Differential Effects of Antiepileptic Drugs on Focal Seizures in the Intrahippocampal Kainate Mouse Model of Mesial Temporal Lobe Epilepsy. CNS Neuroscience & Therapeutics, 22 (6), 497–506. doi: http://doi.org/10.1111/cns.12523
  18. El Kayal, W. M., Shtrygol, S. Y., Zalevskyi, S. V., Shark, A. abu, Tsyvunin, V. V., Kovalenko, S. M. et. al. (2019). Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. European Journal of Medicinal Chemistry, 180, 134–142. doi: http://doi.org/10.1016/j.ejmech.2019.06.085
  19. Olsen, R. W. (2006). Picrotoxin-like channel blockers of GABAA receptors. Proceedings of the National Academy of Sciences, 103 (16), 6081–6082. doi: http://doi.org/10.1073/pnas.0601121103
  20. Salazar, P., Tapia, R. (2015). Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Research, 116, 27–33. doi: http://doi.org/10.1016/j.eplepsyres.2015.06.014
  21. Otter, J., D'Orazio, J. L. (2021). Strychnine Toxicity. StatPearls Publishing. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459306/
  22. Narayan, S., Singh, N. (2012). Camphor poisoning – An unusual cause of seizure. Medical Journal Armed Forces India, 68 (3), 252–253. doi: http://doi.org/10.1016/j.mjafi.2011.11.008
  23. Park, T.-J., Seo, H.-K., Kang, B.-J., Kim, K.-T. (2001). Noncompetitive inhibition by camphor of nicotinic acetylcholine receptors. Biochemical Pharmacology, 61 (7), 787–793. doi: http://doi.org/10.1016/s0006-2952(01)00547-0
  24. Funck, V. R., Ribeiro, L. R., Pereira, L. M., de Oliveira, C. V., Grigoletto, J., Della-Pace, I. D. et. al. (2015). Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience, 298, 171–179. doi: http://doi.org/10.1016/j.neuroscience.2015.04.031
  25. Krishnan, G. P., Filatov, G., Shilnikov, A., Bazhenov, M. (2015). Electrogenic properties of the Na+/K+ATPase control transitions between normal and pathological brain states. Journal of Neurophysiology, 113 (9), 3356–3374. doi: http://doi.org/10.1152/jn.00460.2014
  26. Sergeev, P. V., Shimanovskii, N. L. (2010). Biokhimicheskaia farmakologiia. Moscow: Moscow Information Agency, 624.
  27. Patocka, J., Nepovimova, E., Wu, W., Kuca, K. (2020). Digoxin: Pharmacology and toxicology – A review. Environmental Toxicology and Pharmacology, 79. doi: http://doi.org/10.1016/j.etap.2020.103400
  28. Alrashood, S. T. (2016). Carbamazepine. Profiles of Drug Substances, Excipients and Related Methodology. Elsevier Inc., 133–321. doi: http://doi.org/10.1016/bs.podrm.2015.11.001
  29. Sills, G. J., Rogawski, M. A. (2020). Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 168. doi: http://doi.org/10.1016/j.neuropharm.2020.107966

Downloads

Published

2021-12-13

How to Cite

Tsyvunin, V., Shtrygol’, S., Havrylov, I., & Shtrygol’, D. (2021). Low-dose digoxin enhances the anticonvulsive potential of carbamazepine and lamotrigine in chemo-induced seizures with different neurochemical mechanisms. ScienceRise: Pharmaceutical Science, (6 (34), 58–65. https://doi.org/10.15587/2519-4852.2021.249375

Issue

Section

Pharmaceutical Science