Status and analysis of trends in the metformin -based drug development: formation of the logistic system of scientific research

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.255536

Keywords:

logistic system of scientific research, metformin, dipeptidyl peptidase-4 inhibitors, SGLT2 inhibitors

Abstract

The aim of the work is analysis of the current state and trends in the metformin-based drug development with the subsequent formation of the logistics system of scientific research.

Materials and methods. Studies were conducted using databases on the Internet (2015-2022): PubMed; U.S. Food and Drug Administration, European Medicines Agency, the State Expert Center of the Ministry of Health of Ukraine, scientific and metric databases - Scopus, Cochrane Database, US Patent Office. It has used retrospective, logical, graphic research methods, content analysis, modelling.

Results. The model of the logistic system of metformin scientific research has developed. It represents the set of elements that are interconnected through information communication, its composition and features, which are associated with the pharmacological action of metformin, are determined.

Logistic system of metformin scientific research allows: to demonstrate the uniqueness of the drug, to reveal its potential and new opportunities for medical use, prospects for the development of new types of dosage forms and new combined drugs; to identify the threat of patent infringement, to identify opportunities for establishing partnerships; to present scientific products in the form of a drug on the pharmaceutical market, optimizing the research time, reducing the development stages due to the available information and documentation, ensuring the synchronization of innovative information flows; to optimize the total costs of scientific research and receive at the expense of the specified profit.

Logistic system of metformin scientific research is recommended for implementation in scientific organizations and pharmaceutical companies that perform R&D to achieve concentration of information search in solving logistics problems in the field of creating medicines based on metformin.

Conclusions. Thus, the management of scientific research in pharmacy using the logistic approach ensures the time reduction of the medicine to entry into the market, reduces the cost of its creation, prevents duplication of research, and promotes optimization of solutions. The analysis revealed that the creation of medicines based on metformin should be aimed at the search and development of combined sugar-reducing drugs with mutually complementary mechanisms of action

Author Biographies

Elena Litvinova, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Management, Economy and Quality Assurance in Pharmacy

Olga Posilkina, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Management, Economy and Quality Assurance in Pharmacy

Svitlana Kovalenko, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Management, Economy and Quality Assurance in Pharmacy

Rymma Yeromenko, National University of Pharmacy

Doctor of Biological Sciences, Professor

Department of Clinical Laboratory Diagnostics

Yuliia Bratishko, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Associate Professor

Department of Management, Economy and Quality Assurance in Pharmacy

Anastasiya Lisna, National University of Pharmacy

PhD, Associate Professor

Department of Management, Economy and Quality Assurance in Pharmacy

References

  1. International Diabetes Federation (IDF) (2019). IDF Diabetes Atlas 2019. Brussels, 178.
  2. Pankiv, V. I. (2020). Type 2 diabetes mellitus: Current international guidelines, personalized approach and real outpatient practice. International journal of endocrinology, 16 (6), 463–470. doi: http://doi.org/10.22141/2224-0721.16.6.2020.215384
  3. Foretz, M., Guigas, B., Viollet, B. (2019). Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology, 15 (10), 569–589. doi: http://doi.org/10.1038/s41574-019-0242-2
  4. Tkach, S. M. (2020). Metformin as a drug modifyinggut microbiota. Clinical Endocrinology and Endocrine Surgery, 1, 72–76. doi: http://doi.org/10.30978/cees-2020-1-72
  5. De la Cuesta-Zuluaga, J., Mueller, N. T., Corrales-Agudelo, V., Velásquez-Mejía, E. P., Carmona, J. A., Abad, J. M., Escobar, J. S. (2016). Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid–Producing Microbiota in the Gut. Diabetes Care, 40 (1), 54–62. doi: http://doi.org/10.2337/dc16-1324
  6. Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Mannerås-Holm, L. et. al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 23 (7), 850–858. doi: http://doi.org/10.1038/nm.4345
  7. Demidova, T. Yu., Drozdova, I. N. (2017) Metformin: review of current evidence and international recommendations. Therapy, 2 (12), 95–100.
  8. American Diabetes Association Standards of Medical Care in Diabetes 2020 (2020). Diabetes Care, 43 (1), 215.
  9. Ruyatkina, L. A., Ruyatkin, D. S. (2017). Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes Mellitus, 20 (3), 210–219. doi: http://doi.org/10.14341/dm2003458-64
  10. Pryor, R., Cabreiro, F. (2015). Repurposing metformin: an old drug with new tricks in its binding pockets. Biochemical Journal, 471 (3), 307–322. doi: http://doi.org/10.1042/bj20150497
  11. Novitckaia, V. D., Shcherbakov, V. V. (2018). Modelnoe obosnovanie sistemnykh reshenii v logistike NIOKR. Izvestiia SPbGEU, 3 (111), 92–98.
  12. Promoting access to medical technologies and innovation – a WHO, WIPO, WTO executive course on the intersections between public health, intellectual property and trade (2020). World Health Organization and World Intellectual Property Organization. Available at: https://www.wto.org/english/res_e/publications_e/who-wipo-wto_2020_e.htm
  13. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (1998). The Lancet, 352 (9131), 837–853. doi: http://doi.org/10.1016/s0140-6736(98)07019-6
  14. Kahn, S. E., Haffner, S. M., Heise, M. A., Herman, W. H., Holman, R. R., Jones, N. P. et. al. (2006). Glycemic Durability of Rosiglitazone, Metformin, or Glyburide Monotherapy. New England Journal of Medicine, 355 (23), 2427–2443. doi: http://doi.org/10.1056/nejmoa066224
  15. Sheng, Z., Cao, J.-Y., Pang, Y.-C., Xu, H.-C., Chen, J.-W., Yuan, J.-H. et. al. (2019). Effects of Lifestyle Modification and Anti-diabetic Medicine on Prediabetes Progress: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 10. doi: http://doi.org/10.3389/fendo.2019.00455
  16. Svensson, E., Baggesen, L. M., Johnsen, S. P., Pedersen, L., Nørrelund, H., Buhl, E. S. et. al. (2017). Early Glycemic Control and Magnitude of HbA1c Reduction Predict Cardiovascular Events and Mortality: Population-Based Cohort Study of 24,752 Metformin Initiators. Diabetes Care, 40 (6), 800–807. doi: http://doi.org/10.2337/dc16-2271
  17. Crowley, M. J., Diamantidis, C. J., McDuffie, J. R., Cameron, C. B., Stanifer, J. W., Mock, C. K. et. al. (2017). Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease. Annals of Internal Medicine, 166 (3), 191–200. doi: http://doi.org/10.7326/m16-1901
  18. Monami, M., Candido, R., Pintaudi, B., Targher, G., Mannucci, E., Mannucci, E. et. al. (2021). Effect of metformin on all-cause mortality and major adverse cardiovascular events: An updated meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 31 (3), 699–704. doi: http://doi.org/10.1016/j.numecd.2020.11.031
  19. Hu, Y., Lei, M., Ke, G., Huang, X., Peng, X., Zhong, L., Fu, P. (2020). Metformin Use and Risk of All-Cause Mortality and Cardiovascular Events in Patients With Chronic Kidney Disease – A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.559446
  20. Han, Y., Xie, H., Liu, Y., Gao, P., Yang, X., Shen, Z. (2019). Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovascular Diabetology, 18 (1). doi: http://doi.org/10.1186/s12933-019-0900-7
  21. Bergmark, B. A., Bhatt, D. L., McGuire, D. K., Cahn, A., Mosenzon, O. et. al. (2019). Metformin Use and Clinical Outcomes Among Patients With Diabetes Mellitus With or Without Heart Failure or Kidney Dysfunction. Circulation, 140 (12), 1004–1014. doi: http://doi.org/10.1161/circulationaha.119.040144
  22. Weng, S., Luo, Y., Zhang, Z., Su, X., Peng, D. (2020). Effects of metformin on blood lipid profiles in nondiabetic adults: a meta-analysis of randomized controlled trials. Endocrine, 67 (2), 305–317. doi: http://doi.org/10.1007/s12020-020-02190-y
  23. Yunilaynen, O. A., Oleichik, I. V., Sizov, S. V., Baranov, P. A., Starostina, E. G. (2021). Efficacy of metformin for treatment and prevention of antipsychotic-induced overweight and obesity in women: an open-label, randomized, prospective placebo-controlled study. Obesity and Metabolism, 18 (2), 198–209. doi: http://doi.org/10.14341/omet12684
  24. Ning, H.-H., Le, J., Wang, Q., Young, C. A., Deng, B., Gao, P.-X. et. al. (2018). The effects of metformin on simple obesity: a meta-analysis. Endocrine, 62 (3), 528–534. doi: http://doi.org/10.1007/s12020-018-1717-y
  25. Solymár, M., Ivic, I., Pótó, L., Hegyi, P., Garami, A., Hartmann, P. et. al. (2018). Metformin induces significant reduction of body weight, total cholesterol and LDL levels in the elderly – A meta-analysis. PLOS ONE, 13 (11), e0207947. doi: http://doi.org/10.1371/journal.pone.0207947
  26. Shestakov, A. V., Saprina, T. V., Anufrak, I. A., Gonchikova, O. E., Chernysheva, A. L. (2018). Metformin: new perspectives in chemoprevention and therapy of cancer. Russian Journal of Biotherapy, 17 (3), 12–19. doi: http://doi.org/10.17650/1726-9784-2018-17-3-12-19
  27. Yang, W.-T., Yang, H.-J., Zhou, J.-G., Liu, J.-L. (2020). Relationship between metformin therapy and risk of colorectal cancer in patients with diabetes mellitus: a meta-analysis. International Journal of Colorectal Disease, 35 (11), 2117–2131. doi: http://doi.org/10.1007/s00384-020-03704-w
  28. Hou, Y.-C., Hu, Q., Huang, J., Fang, J.-Y., Xiong, H. (2016). Metformin therapy and the risk of colorectal adenoma in patients with type 2 diabetes: A meta-analysis. Oncotarget, 8 (5), 8843–8853. doi: http://doi.org/10.18632/oncotarget.13633
  29. Coyle, C., Cafferty, F. H., Vale, C., Langley, R. E. (2016). Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Annals of Oncology, 27 (12), 2184–2195. doi: http://doi.org/10.1093/annonc/mdw410
  30. Kulkarni, A. S., Peck, B. D., Walton, R. G., Kern, P. A., Mar, J. C., Windham, S. T. et. al. (2020). Metformin alters skeletal muscle transcriptome adaptations to resistance training in older adults. Aging, 12 (20), 19852–19866. doi: http://doi.org/10.18632/aging.104096
  31. Campbell, J. M., Stephenson, M. D., de Courten, B., Chapman, I., Bellman, S. M., Aromataris, E. (2018). Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 65 (4), 1225–1236. doi: http://doi.org/10.3233/jad-180263
  32. Lukito, A. A., Pranata, R., Henrina, J., Lim, M. A., Lawrensia, S., Suastika, K. (2020). The Effect of Metformin Consumption on Mortality in Hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (6), 2177–2183. doi: http://doi.org/10.1016/j.dsx.2020.11.006
  33. Kow, C. S., Hasan, S. S. (2020). Mortality risk with preadmission metformin use in patients with COVID‐19 and diabetes: A meta‐analysis. Journal of Medical Virology, 93 (2), 695–697. doi: http://doi.org/10.1002/jmv.26498
  34. Bramante, C. T., Ingraham, N. E., Murray, T. A., Marmor, S., Hovertsen, S., Gronski, J. et. al. (2020). Observational Study of Metformin and Risk of Mortality in Patients Hospitalized with Covid-19. Intensive Care and Critical Care Medicine. doi: http://doi.org/10.1101/2020.06.19.20135095
  35. Kamynskyi, A. V. (2020) Sakharnыi dyabet 2-ho typa: pervыi shah lechenyia. Liky Ukrainy, 3, 42–47.
  36. Aggarwal, N., Singla, A., Mathieu, C., Montanya, E., Pfeiffer, A. F. H., Johnsson, E. et. al. (2018). Metformin extended-release versus immediate-release: An international, randomized, double-blind, head-to-head trial in pharmacotherapy-naïve patients with type 2 diabetes. Diabetes, Obesity & Metabolism, 20 (2), 463–467. doi: http://doi.org/10.1111/dom.13104
  37. Derosa, G., D’Angelo, A., Romano, D., Maffioli, P. (2017). Effects of metformin extended release compared to immediate release formula on glycemic control and glycemic variability in patients with type 2 diabetes. Drug Design, Development and Therapy, 11, 1481–1488. doi: http://doi.org/10.2147/dddt.s131670
  38. Henry, R. R., Frias, J. P., Walsh, B., Skare, S., Hemming, J., Burns, C. et. al. (2018). Improved glycemic control with minimal systemic metformin exposure: Effects of Metformin Delayed-Release (Metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. PLOS ONE, 13 (9), e0203946. doi: http://doi.org/10.1371/journal.pone.0203946
  39. Matthews, D. R., Paldánius, P. M., Proot, P., Chiang, Y., Stumvoll, M., Del Prato, S. (2019). Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. The Lancet, 394 (10208), 1519–1529. doi: http://doi.org/10.1016/s0140-6736(19)32131-2

Downloads

Published

2022-04-29

How to Cite

Litvinova, E., Posilkina, O., Kovalenko, S., Yeromenko, R., Bratishko, Y., & Lisna, A. (2022). Status and analysis of trends in the metformin -based drug development: formation of the logistic system of scientific research. ScienceRise: Pharmaceutical Science, (2(36), 37–45. https://doi.org/10.15587/2519-4852.2022.255536

Issue

Section

Pharmaceutical Science