Chemical composition of essential oils from flowers of veronica Longifolia L., Veronica Incana L. and Veronica Spicata L.
DOI:
https://doi.org/10.15587/2519-4852.2022.263735Keywords:
essential oil, flowers, GC-MS analysis, V. longifolia L., V. incana L., V. spicata L.Abstract
In the Ukrainian flora, species of Veronica L. genus (Plantaginaceae Juss.) are classified into 8 sections. The phytochemical research into secondary metabolites of Veronica L. genus most related to the study of phenolic compounds and iridoids, while terponoids of these species need further research. The chemical profiles of V. longifolia L., V. incana L. and V. spicata L. of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers are urgent.
The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.
Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals in the studied essential oils with the data of NIST02 mass spectral library. The quantification of substances in the raw materials was carried out in comparison with a standard sample of menthol.
Results. As a result, 72 compounds were detected and quantified. The total content of essential oil in V. longifolia L. flowers was 0.17 % (39 components), the following compounds dominated: benzoacetaldehyde – 8.05, squalene – 5.17, palmitic acid – 15.73, butyl phthalate – 7.18. The total content of essential oil in V. incana L. flowers was 0.15 % (43 components), the following compounds prevailed: squalene 20.47, fatty acids, namely palmitic – 26.88, palmitoleic – 17.15, oleic – 11.61. The total content of the essential oil in V. spicata L. flowers was 0.11 % (43 components), the following compounds dominated: squalene – 5.53, fatty acids: palmitic – 22.78, linoleic – 6.72, carbohydrates: heptacosan – 12.27, hexacosan – 7.45. Among the identified compounds, mono-, norsesqui-, sesqui-, di- and triterpenoids, their oxidation products (aromatic compounds, aldehydes and alcohols, ketones), fatty acids, hydrocarbons and their derivatives were detected.
Conclusions. The chemical composition of essential oils from flowers of V. longifolia L., V. incana L. and V. spicata L. from Ukrainian flora was first studied by means of chromatography mass spectrometry. The yield of essential oil from V. longifolia L. flowers is higher (0.17 %) compared to those from flowers of V. incana L. (0.15 %) and V. spicata L. (0.11 %). Among the identified compounds terpenoids, aromatic compounds, their oxidation products, fatty acids and their esters, hydrocarbons were detected.
The study of biologically active substances in essential oils from Veronica species flowers expands the scientific data on the chemical composition of these species and gives background for the further development of medicinal products, their standardization and understanding of their pharmacological activity
Supporting Agency
- Ministry of Health Care of Ukraine
References
- Veronica L. Plants of the World Online. Kew Science. Available at: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30005997-2
- Wheeler, J., Marchant, N., Lewington, M., Graham, L. (2002). Flora of the south west, Bunbury, Augusta, Denmark. Vol. 2, dicotyledons. Australian Biological Resources Study. Canberra.
- Grieve, B. J., Blackall, W. E. (1982). How to know Western Australian wildflowers: a key to the flora of the extratropical regions of Western Australia. Part IV. University of W.A. Press.
- Buono, D., Khan, G., von Hagen, K. B., Kosachev, P. A., Mayland-Quellhorst, E., Mosyakin, S. L., Albach, D. C. (2021). Comparative Phylogeography of Veronica spicata and V. longifolia (Plantaginaceae) Across Europe: Integrating Hybridization and Polyploidy in Phylogeography. Frontiers in Plant Science, 11. doi: http://doi.org/10.3389/fpls.2020.588354
- Muñoz-Centeno, L. M., Albach, D. C., Sánchez-Agudo, J. A., Martínez-Ortega, M. M. (2006). Systematic Significance of Seed Morphology in Veronica (Plantaginaceae): A Phylogenetic Perspective. Annals of Botany, 9 8(2), 335–350. doi: http://doi.org/10.1093/aob/mcl120
- Martínez-Ortega, M. M., Sánchez, J. S., Rico, E. (2000). Palynological study of Veronica Sect. Veronica and Sect. Veronicastrum (Scrophulariaceae) and its taxonomic significance. Grana, 39 (1), 21–31. doi: http://doi.org/10.1080/00173130150503777
- Albach, D. C., Martínez-Ortega, M. M., Delgado, L., Weiss-Schneeweiss, H., Özgökce, F., Fischer, M. A. (2008). Chromosome Numbers in Veroniceae (Plantaginaceae): Review and Several New Counts1. Annals of the Missouri Botanical Garden, 95 (4), 543–566. doi: http://doi.org/10.3417/2006094
- Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/s0192415x19500617
- Albach, D. C., Martínez-Ortega, M. M., Fischer, M. A., Chase, M. W. (2004). A new classification of the tribe Veroniceae-problems and a possible solution. Taxon, 53 (2), 429–452. doi: http://doi.org/10.2307/4135620
- Albach, D., Fischer, M. (2003). AFLP-and genome size analyses: contribution to the taxonomy of Veronica subg. Pseudolysimachium sect. Pseudolysimachion (Plantaginaceae), with a key to the European taxa. Phyt. Balc, 9, 401–424.
- Mosyakin, S. L., Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: A nomenclatural checklist. Kyiv, 345.
- Salehi, B., Shivaprasad Shetty, M., V. Anil Kumar, N., Živković, J., Calina, D., Oana Docea, A. et. al. (2019). Veronica Plants – Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules, 24 (13), 2454. doi: http://doi.org/10.3390/molecules24132454
- Witkowska-Banaszczak, E., Durkiewicz, M., Bylka, W. (2016). The Genus Veronica L. – activity, therapeutic use, review of research. Borgis. Post py Fitoterapii, 71–77.
- Beara, I., Živković, J., Lesjak, M., Ristić, J., Šavikin, K., Maksimović, Z., Janković, T. (2015). Phenolic profile and anti-inflammatory activity of three Veronica species. Industrial Crops and Products, 63, 276–280. doi: http://doi.org/10.1016/j.indcrop.2014.09.034
- Gusev, N. F., Nemereshina, O. N. (2005). Antibacterial study of preparations from Veronica L. species. Cis-Urals. Ecoholization of nature management in the agro-industrial complex. Agricultural sciences, 4 (8), 43–47.
- Harput, U. S., Saracoglu, I., Inoue, M., Ogihara, Y. (2002). Anti-inflammatory and Cytotoxic Activities of Five Veronica Species. Biological and Pharmaceutical Bulletin, 25 (4), 483–486. doi: http://doi.org/10.1248/bpb.25.483
- Dunkić, V., Kosalec, I., Kosir, I., Potocnik, T., Cerenak, A., Koncic, M. et. al. (2015). Antioxidant and antimicrobial properties of Veronica spicata L. (Plantaginaceae). Current Drug Targets, 16 (14), 1660–1670. doi: http://doi.org/10.2174/1389450116666150531161820
- Harpet, U. S. (2011). Radical scavenging effects of different Veronica L. Species. Records of natural product, 5 (2), 100–107.
- Jensen, S. R., Gotfredsen, C. H., Harput, U. S., Saracoglu, I. (2010). Chlorinated Iridoid Glucosides from Veronica longifolia and Their Antioxidant Activity. Journal of Natural Products, 73 (9), 1593–1596. doi: http://doi.org/10.1021/np100366k
- Nazlić, M., Kremer, D., Grubešić, R. J., Soldo, B., Vuko, E., Stabentheiner, E. et. al. (2020). Endemic Veronica saturejoides Vis. ssp. saturejoides–Chemical Composition and Antioxidant Activity of Free Volatile Compounds. Plants, 9 (12), 1646. doi: http://doi.org/10.3390/plants9121646
- Kovalova, A. M., Osmachko, A. P., Kashpur, N. V., Hrudko, I. V. (2016). The antibacterial activity of complexes of Veronica Longifolia Herb. Ukrainian Biopharmaceutical Journal, 1, 58–62.
- Taskova, R. M., Albach, D. C., Grayer, R. J. (2004). Phylogeny ofVeronica‐ a Combination of Molecular and Chemical Evidence. Plant Biology, 6 (6), 673–682. doi: http://doi.org/10.1055/s-2004-830330
- Taskova, R., Peev, D., Handjieva, N. (2002). Iridoid glucosides of the genus Veronica s.l. and their systematic significance. Plant Systematics and Evolution, 231 (1-4), 1–17. doi: http://doi.org/10.1007/s006060200008
- Kovaleva, А., Ain, R., Tetiana, I., Osmachko, A., Goryacha, O., Omelyanchik, L., Koshovyi, O. (2022). Carboxylic acids in the flowers of Veronica spicata L. and Veronica incana L. ScienceRise: Pharmaceutical Science, 1 (35), 37–43. doi: http://doi.org/10.15587/2519-4852.2022.253541
- Osmachko, А. P., Kovaleva, A. M., Ili’ina, T. V., Koshovyi, O. N., Komіsarenko, A. M., Akhmedov, E. Yu. (2017). Study of Macro- and Microelements Composition of Veronica longifolia L. herb and Veronica teucrium L. Herb and Rhizomes, and Extracts Obtained from These Species. Azerbaijan Pharmaceutical and Pharmacotherapeutic Journal, 1, 24–28.
- Osmachko, A. P., Kovaleva, A. M., Goryachaya, O. V., Avidzba, Yu. N. (2016). Amino acid composition of Veronica teucrium L. herb. Der Pharma Chemica, 8 (10), 216–220.
- Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/s0192415x19500617
- Mykhailenko, O., Kovalyov, V., Orlova, T. (2020). Chemical composition of the essential oil of several Iris species. Thai Journal of Pharmaceutical Sciences, 44 (3), 179–185.
- Krivoruchko, E. V., Kovalev, V. N. (2011). Essential oil from Aronia melanocarpa flowers. Chemistry of Natural Compounds, 47 (4), 644–645. doi: http://doi.org/10.1007/s10600-011-0019-x
- Koshovyi, O., Raal, A., Kovaleva, A., Myha, M., Ilina, T., Borodina, N., Komissarenko, A. (2020). The phytochemical and chemotaxonomic study of Salvia spp. growing in Ukraine. Journal of Applied Biology & Biotechnology, 8 (3), 29–36. doi: http://doi.org/10.7324/jabb.2020.80306
- Osmachko, A. P., Kovaleva, A. M., Ili’ina, T. V., Goryachaya, O. V. (2014). Сomponents of essential oil of Veronica longifolia L. leaves and flovers. The Pharma Innovation, 3 (1), 1–6.
- Starchenko, G., Hrytsyk, A., Raal, A., Koshovyi, O. (2020). Phytochemical Profile and Pharmacological Activities of Water and Hydroethanolic Dry Extracts of Calluna vulgaris (L.) Hull. Herb. Plants, 9 (6), 751. doi: http://doi.org/10.3390/plants9060751
- Ilina, T., Skowrońska, W., Kashpur, N., Granica, S., Bazylko, A., Kovalyova, A. et. al. (2020). Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb. Molecules, 25 (16), 3721. doi: http://doi.org/10.3390/molecules25163721
- Derzhavna Farmakopeia Ukrainy. Vol. 3 (2015). Kharkiv: DU «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv».
- Bondarenko, V. N., Kanivska, I. Yu., Paramonova, S. M. (2006). Teoriia ymovirnostei i matematychna statystyka. P. 1. Kyiv: NTUU "KPI", 125.
- Chamorro, E. R., Zambón, S. N., Morales, W. G., Sequeira, A. F., Velasco, G. A. (2012). Study of the Chemical Composition of Essential Oils by Gas Chromatography. Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications. doi: http://doi.org/10.5772/33201
- Gören, N., Demirci, B., Başer, K. H. C. (2001). Composition of the essential oils ofTanacetumspp. from Turkey†. Flavour and Fragrance Journal, 16 (3), 191–194. doi: http://doi.org/10.1002/ffj.976
- Binh, N. Q., Tung, N. T., Hanh, N. P., Truong, L. H., Cuong, N. H., Hoai, K. T. et. al. (2021). Chemical Composition of Essential Oils from the Leaves, Stems and Roots of Aristolochia petelotii O.C. Schmidt Growing in Vietnam. Journal of Essential Oil Bearing Plants, 24 (5), 983–989. doi: http://doi.org/10.1080/0972060x.2021.1987335
- Bicchi, C., Brunelli, C., Cordero, C., Rubiolo, P., Galli, M., Sironi, A. (2004). Direct resistively heated column gas chromatography (Ultrafast module-GC) for high-speed analysis of essential oils of differing complexities. Journal of Chromatography A, 1024 (1-2), 195–207. doi: http://doi.org/10.1016/j.chroma.2003.10.018
- Cri ̧san, G., T ̆ama ̧s, M., Micl ̆au ̧s, V., Krausz, T., and Sandor, V. (2007). A comparative study of some Veronica L. species. Rev Med Chir Soc Med Nat Iasi, 111 (1), 280–284.
- Kim, S.-K., Karadeniz, F. (2012). Biological Importance and Applications of Squalene and Squalane. Advances in Food and Nutrition Research, 65, 223–233. doi: http://doi.org/10.1016/b978-0-12-416003-3.00014-7
- De Carvalho, C., Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23 (10), 2583. doi: http://doi.org/10.3390/molecules23102583
- Innis, S. M. (2015). Palmitic Acid in Early Human Development. Critical Reviews in Food Science and Nutrition, 56 (12), 1952–1959. doi: http://doi.org/10.1080/10408398.2015.1018045
- Menary, R. C., Garland, S. M. (1999). Authenticating Essential Oil Flavours and Fragrances – Using Enantiomeric Composition Analysis. Publication No. 99/125. Project No.UT-15A. Available at: https://www.agrifutures.com.au/wp-content/uploads/publications/99-125.pdf
- Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. M., Levi, R. et. al. (2020). Squalene: More than a Step toward Sterols. Antioxidants, 9 (8), 688. doi: http://doi.org/10.3390/antiox9080688
- Huang, Z.-R., Lin, Y.-K., Fang, J.-Y. (2009). Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules, 14 (1), 540–554. doi: http://doi.org/10.3390/molecules14010540
- Bouyahya, A., Mechchate, H., Benali, T., Ghchime, R., Charfi, S., Balahbib, A. et. al. (2021). Health Benefits and Pharmacological Properties of Carvone. Biomolecules, 11 (12), 1803. doi: http://doi.org/10.3390/biom11121803
- An, Q., Ren, J.-N., Li, X., Fan, G., Qu, S.-S., Song, Y. et. al. (2021). Recent updates on bioactive properties of linalool. Food & Function, 12 (21), 10370–10389. doi: http://doi.org/10.1039/d1fo02120f
- Lei, Y., Fu, P., Jun, X., Cheng, P. (2018). Pharmacological Properties of Geraniol – A Review. Planta Medica, 85 (1), 48–55. doi: http://doi.org/10.1055/a-0750-6907
- Lapczynski, A., Lalko, J., McGinty, D., Bhatia, S., Letizia, C. S., Api, A. M. (2007). Fragrance material review on damascenone. Food and Chemical Toxicology, 45 (1), S172–S178. doi: http://doi.org/10.1016/j.fct.2007.09.056
- Agatonovic-Kustrin, S., Kustrin, E., Gegechkori, V., Morton, D. W. (2020). Anxiolytic Terpenoids and Aromatherapy for Anxiety and Depression. Reviews on New Drug Targets in Age-Related Disorders, 1260, 283–296. doi: http://doi.org/10.1007/978-3-030-42667-5_11
- Koshovyi, O., Raal, A., Kireyev, I., Tryshchuk, N., Ilina, T., Romanenko, Y. et. al. (2021). Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants, 10 (2), 230. doi: http://doi.org/10.3390/plants10020230
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Alla Kovaleva, Alina Osmachko, Тetiana Ilina, Olga Goryacha, Ludmila Omelyanchik, Andriy Grytsyk, Oleh Koshovyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.