Preparation and evaluation of lipid matrix microencapsulation for drug delivery of azilsartan kamedoxomil
DOI:
https://doi.org/10.15587/2519-4852.2022.270306Keywords:
azilsartan kamedoxomil, controlled release, microparticles, antihypertensive drug, HPLC methodAbstract
The aim of the work is to consolidate azilsartan-kamedoxomil (AZM) into lipid matrix controlled-release microparticles to enhance its permeability because AZM belongs to Biopharmaceutical classification (BCS) IV which characterized by poor permeability and to protect AZM from light and humidity and execute a prolonged release profile.
Materials and methods. A reversed-phase HPLC method was created and validated to estimate the drug. AZM microparticles formulations were invented using melt dispersion technique and waxy materials such as carnuba wax, beeswax, stearic acid in the ratio of waxy-substance: drug ranging from 0.25: 1 to 1:1 and stabilizer namely; tween 80 and Poloxamer 407 in ratio of stabilizer: drug ranging from 0.5:1 to 1:1. Azilsartan formulations were assessed for azilsartan-medoxomil content, loading, entrapment efficiency, the zeta potential,the particle size, the morphology by scanning electronic microscopy (SEM), and in-vitro release profile.
Results. Zeta potential results for microparticle formulations using beeswax and carnuba range from -21.1 mV to -26.6 mV and -20.6 mV to -26.7 mV, respectively. This difference indicates that the azilsartan microparticles containing stearic acid are better stabilized with zeta potential of 25.3 - 29.7 mV. Furthermore, the release from azilsartan microparticle formulations containing stearic acid exceeded 80 % after 8 h and remained for 24 h while release from beeswax did not exceed 65 % after the same period and less than 60 % in case of carnuba formulations
Conclusions. The formulation (AZSP4) exhibited the highest zeta potential and released exceeding 80 % of AZM over the course of 8 hours and remained over a day. AZSP4 microparticles formulation containing, poloxamer 407, in a 0.8:0.8:1 drug: stearic acid: poloxamer ratio proved the ability of stearic acid microencapsulation employing poloxamer as stabilizer in a certain ratio can prolong the release of AZM
References
- Lewington, S., Clarke, R., Qizilbash, N., Peto, R., Collins, R. (2002). Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet, 360 (9349), 1903–1913. doi: https://doi.org/10.1016/s0140-6736(02)11911-8
- Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H. et al. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380 (9859), 2224–2260. doi: https://doi.org/10.1016/s0140-6736(12)61766-8
- Katsi, V., Michalakeas, C., Soulaidopoulos, S., Antonopoulos, A. S., Vlachopoulos, C., Tousoulis, D., Tsioufis, K. (2021). Evaluating the Safety and Tolerability of Azilsartan Medoxomil Alone or in Combination With Chlorthalidone in the Management of Hypertension: A Systematic Review. Current Hypertension Reviews, 17 (3), 217–227. doi: https://doi.org/10.2174/1573402117666210112144505
- Pradhan, A., Tiwari, A., Sethi, R. (2019). Azilsartan: Current Evidence and Perspectives in Management of Hypertension. International Journal of Hypertension, 2019, 1–8. doi: https://doi.org/10.1155/2019/1824621
- Sica, D., White, W. B., Weber, M. A., Bakris, G. L., Perez, A., Cao, C., Handley, A., Kupfer, S. (2011). Comparison of the Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil vs Valsartan by Ambulatory Blood Pressure Monitoring. The Journal of Clinical Hypertension, 13 (7), 467–472. doi: https://doi.org/10.1111/j.1751-7176.2011.00482.x
- Tamboli, J. A., Mohite, S. K. (2020). Self Microemulsifying Immediate Release Tablet of Azilsartan for Enhanced Dissolution. Research Journal of Pharmacy and Technology, 13 (1), 197–202. doi: https://doi.org/10.5958/0974-360x.2020.00040.2
- Choudhury, N., Meghwal, M., Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2 (4), 426–442. doi: https://doi.org/10.1002/fft2.94
- Hosseini, S. M., Abbasalipourkabir, R., Jalilian, F. A., Asl, S. S., Farmany, A., Roshanaei, G., Arabestani, M. R. (2019). Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. Antimicrobial Resistance & Infection Control, 8 (1). doi: https://doi.org/10.1186/s13756-019-0504-8
- Xing, R., Mustapha, O., Ali, T., Rehman, M., Zaidi, S. S., Baseer, A. et al. (2021). Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery. BioMed Research International, 2021, 1–14. doi: https://doi.org/10.1155/2021/9968602
- Ang, L., Darwis, Y., Koh, R., Gah Leong, K., Yew, M., Por, L., Yam, M. (2019). Wound Healing Property of Curcuminoids as a Microcapsule-Incorporated Cream. Pharmaceutics, 11 (5), 205. doi: https://doi.org/10.3390/pharmaceutics11050205
- Chemistry Review (2011). FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/200796Orig1s000ChemR.pdf
- Ekambaram, P., Abdul Hasan Sathali, A. (2011). Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril. Journal of Young Pharmacists, 3 (3), 216–220. doi: https://doi.org/10.4103/0975-1483.83765
- Eltawela, S., Abdelaziz, E., Mahmoud, M., Elghamry, H. (2021). Preparation and characterization of (−)-epigallocatechin gallate lipid based nanoparticles for enhancing availability and physical properties. Al-Azhar Journal of Pharmaceutical Sciences, 63 (1), 17–36. doi: https://doi.org/10.21608/ajps.2021.153558
- Castro, S. R., Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., Rodrigues da Silva, G. H., Mitsutake, H. et al. (2021). A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-99743-6
- Lombardo, S. M., Günday Türeli, N., Koch, M., Schneider, M., Türeli, A. E. (2021). Reliable release testing for nanoparticles with the NanoDis System, an innovative sample and separate technique. International Journal of Pharmaceutics, 609, 121215. doi: https://doi.org/10.1016/j.ijpharm.2021.121215
- Kassem, A. M., Mohamed, I. M., Mohamed, A. A. (2016). Development and validation of a stability indicating assay for azilsartan kamedoxomil in solid dosage forms. International Journal of Advanced Research, 4 (10), 1630–1639. doi: https://doi.org/10.21474/ijar01/1973
- Validation of Analytical Procedures: Text and Methodology, Q 2 (R1) (2005). ICH. International Conference on Harmonization.
- USP 43; The Pharmacopoeia of United States of America (2020). National Formulary 38, Mack publishing Co. Easton, 2.
- Bayoumi, A. A. (2018). Enhancement of solubility of a poorly soluble antiplatelet aggregation drug by cogrinding technique. Asian Journal of Pharmaceutical and Clinical Research, 11 (10), 340–344. doi: https://doi.org/10.22159/ajpcr.2018.v11i10.27136
- Rahi, F. A., Mohammed Ameen, M. S., Fayyadh, M. S. (2021). Linagliptin and gliclazide di-loaded extended-release nanoparticles: formulation and evaluation. Wiadomości Lekarskie, 74 (9), 2315–2322. doi: https://doi.org/10.36740/wlek202109212
- Giuliano, E., Paolino, D., Fresta, M., Cosco, D. (2018). Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics, 10 (3), 159. doi: https://doi.org/10.3390/pharmaceutics10030159
- Madan, J. R., Patil, K., Awasthi, R., Dua, K. (2019). Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. International Journal of Polymeric Materials and Polymeric Biomaterials, 70 (2), 100–116. doi: https://doi.org/10.1080/00914037.2019.1695206
- Jassem, N. A., Rajab, N. A. (2017). Formulation and in vitro evaluation of azilsartan medoxomil nanosuspension. International Journal of Pharmacy and Pharmaceutical Sciences, 9 (7), 110. doi: https://doi.org/10.22159/ijpps.2017v9i7.18917
- Ma, J., Yang, Y., Sun, Y., Sun, J. (2017). Optimization, characterization and in vitro/vivo evaluation of azilsartan nanocrystals. Asian Journal of Pharmaceutical Sciences, 12 (4), 344–352. doi: https://doi.org/10.1016/j.ajps.2016.09.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Firas Aziz Rahi, Muath Sheet Mohammed Ameen, Krar Kadhim Mohammed Jawad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.