Investigation of the polyphenol composition of red oak (Quercus rubra L.) raw materials
DOI:
https://doi.org/10.15587/2519-4852.2023.277969Keywords:
Northern Red Oak, Quercus rubra, leaves, shoots, flavonoids, catechins, hydroxycinnamic acids, high-performance liquid chromatography (HPLC)Abstract
The aim of the work was to determine the main groups of polyphenolic compounds in Quercus rubra L. raw materials.
Materials and methods. The leaves and annual shoots of Northern Red Oak used for research were collected in August in Lisnyky village of Obuhiv district of Kyiv Oblast (Ukraine). Determination of the component composition and quantitative content of flavonoids (including separately catechins), hydroxycinnamic acids, and phenolic acids were carried out in the samples of air-shade-dried crushed raw material to a particle size of 3 mm by the method of high-performance liquid chromatography (HPLC). Agilent Technologies 1200 liquid chromatograph was used for liquid chromatography.Results. Using the HPLC method, 18 polyphenolic compounds were identified in leaves and annual shoots of Northern Red Oak, in particular, flavonoids: rutin, quercetin-3-β-glucoside, luteolin, neohesperidin; catechins: catechin, epicatechin, epicatechin gallate, gallocatechin; hydroxycinnamic acids: chlorogenic, caffeic, trans-ferulic, trans-cinnamic, p-coumaric, hydroxyphenylacetic, benzoic, syringic, sinapic acids; phenolic acid is gallic acid. The dominant component among flavonoids is rutin (323.43 mg/100 g) (in the composition of catechins, epicatechin gallate (25.45 mg/100 g) prevails); among hydroxycinnamic acids in Northern Red Oak raw materials, chlorogenic acid (139.62 mg/100 g) and sinapic acid (74.64 mg/100 g) prevail.Conclusions. The obtained results point to the prospects of further phytochemical and pharmacological studies of Quercus rubra raw materials, with the aim of creating new plant substances based on it with antioxidant, anti-inflammatory, and antiviral activity
References
- Amarowicz, R., Pegg, R. B. (2019). Natural antioxidants of plant origin. Functional Food Ingredients from Plants, 1–81. doi: https://doi.org/10.1016/bs.afnr.2019.02.011
- Oracz, J., Prejzner, M., Grzelczyk, J., Kowalska, G., Żyżelewicz, D. (2023). Bioactive Compounds, Antioxidant Activity and Sensory Properties of Northern Red Oak (Quercus rubra L., syn. Q. borealis F. Michx) Seeds Affected by Roasting Conditions. Molecules, 28 (5), 2299. doi: https://doi.org/10.3390/molecules28052299
- Fagaceae, Quercus L. Plants of the World Online. The Royal Botanic Gardens, Kew. Available at: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:325819-2
- Perehrym, O. M., Zhyhalova, S. L. (2014). Rid Quercus L. u flori Ukrainy. Materialy mizhnarodnoi konferentsii molodykh uchenykh. Aktualni problemy botaniky ta ekolohii. Kharkiv, 63–64.
- Stanek, M., Stefanowicz, A. M. (2019). Invasive Quercus rubra negatively affected soil microbial communities relative to native Quercus robur in a semi-natural forest. Science of The Total Environment, 696, 133977. doi: https://doi.org/10.1016/j.scitotenv.2019.133977
- Zhang, B., Cai, J., Duan, C.-Q., Reeves, M., He, F. (2015). A Review of Polyphenolics in Oak Woods. International Journal of Molecular Sciences, 16 (12), 6978–7014. doi: https://doi.org/10.3390/ijms16046978
- Derzhavna Farmakopeia Ukrainy. Vol. 3. (2014). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 300.
- Ștefănescu, R., Ciurea, C. N., Mare, A. D., Man, A., Nisca, A., Nicolescu, A. et al. (2022). Quercus robur Older Bark – A Source of Polyphenolic Extracts with Biological Activities. Applied Sciences, 12 (22), 11738. doi: https://doi.org/10.3390/app122211738
- Bhatia, N., Friedman, A., Rosso, J. D. (2019). Applications of topical oak bark extract: clinical examples and discussion. Journal of Drugs in Dermatology, 18 (2), 203–206.
- Valencia-Avilés, E., García-Pérez, M., Garnica-Romo, Ma., Figueroa-Cárdenas, J., Meléndez-Herrera, E., Salgado-Garciglia, R., Martínez-Flores, H. (2018). Antioxidant Properties of Polyphenolic Extracts from Quercus Laurina, Quercus Crassifolia, and Quercus Scytophylla Bark. Antioxidants, 7 (7), 81. doi: https://doi.org/10.3390/antiox7070081
- Ferreira, J. P. A., Miranda, I., Sousa, V. B., Pereira, H. (2018). Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLOS ONE, 13 (5), e0197135. doi: https://doi.org/10.1371/journal.pone.0197135
- Şöhretoğlu, D., Renda, G. (2020). The polyphenolic profile of Oak (Quercus) species: a phytochemical and pharmacological overview. Phytochemistry Reviews, 19 (6), 1379–1426. doi: https://doi.org/10.1007/s11101-020-09707-3
- Elansary, Szopa, Kubica, Ekiert, Mattar, Al-Yafrasi, El-Ansary, El-Abedin, Yessoufou. (2019). Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants, 8 (11), 486. doi: https://doi.org/10.3390/plants8110486
- Oracz, J., Żyżelewicz, D., Pacholczyk-Sienicka, B. (2022). UHPLC-DAD-ESI-HRMS/MS profile of phenolic compounds in northern red oak (Quercus rubra L., syn. Q. borealis F. Michx) seeds and its transformation during thermal processing. Industrial Crops and Products, 189 (4), 115860. doi: https://doi.org/10.1016/j.indcrop.2022.115860
- Górnaś, P. (2018). Oak Quercus rubra L. and Quercus robur L. acorns as an unconventional source of gamma- and beta-tocopherol. European Food Research and Technology, 245 (1), 257–261. doi: https://doi.org/10.1007/s00217-018-3150-0
- Marc (Vlaic), R. A., Niculae, M., Páll, E., Mureșan, V., Mureșan, A., Tanislav, A. et al. (2021). Red Oak (Quercus rubra L.) Fruits as Potential Alternative for Cocoa Powder: Optimization of Roasting Conditions, Antioxidant, and Biological Properties. Forests, 12 (8), 1088. doi: https://doi.org/10.3390/f12081088
- Tanase, C., Nicolescu, A., Nisca, A., Ștefănescu, R., Babotă, M., Mare, A. D. et al. (2022). Biological Activity of Bark Extracts from Northern Red Oak (Quercus rubra L.): An Antioxidant, Antimicrobial and Enzymatic Inhibitory Evaluation. Plants, 11 (18), 2357. doi: https://doi.org/10.3390/plants11182357
- Top, S. M., Preston, C. M., Dukes, J. S., Tharayil, N. (2017). Climate Influences the Content and Chemical Composition of Foliar Tannins in Green and Senesced Tissues of Quercus rubra. Frontiers in Plant Science, 8. doi: https://doi.org/10.3389/fpls.2017.00423
- Suseela, V., Tharayil, N., Orr, G., Hu, D. (2020). Chemical plasticity in the fine root construct of Quercus SPP. varies with root order and drought. New Phytologist, 228 (6), 1835–1851. doi: https://doi.org/10.1111/nph.16841
- Pyrzynska, K., Sentkowska, A. (2019). Chromatographic Analysis of Polyphenols. Polyphenols in Plants. Academic Press, 353–364. doi: https://doi.org/10.1016/b978-0-12-813768-0.00021-9
- Tao, W., Zhou, Z., Zhao, B., Wei, T. (2016). Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC–MS–MS method. Journal of Pharmaceutical and Biomedical Analysis, 131, 140–145. doi: https://doi.org/10.1016/j.jpba.2016.08.020
- Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151–162. doi: https://doi.org/10.1016/j.ultsonch.2018.05.028
- Enogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., Ekpo, O. E. (2018). Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Medicine and Cellular Longevity, 2018, 1–17. doi: https://doi.org/10.1155/2018/6241017
- Farha, A. K., Gan, R.-Y., Li, H.-B., Wu, D.-T., Atanasov, A. G., Gul, K. et al. (2020). The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Critical Reviews in Food Science and Nutrition, 62 (3), 832–859. doi: https://doi.org/10.1080/10408398.2020.1829541
- Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M. et al. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67–74. doi: https://doi.org/10.1016/j.biopha.2017.10.064
- Savych, A., Marchyshyn, S., Kyryliv, M., Bekus, I. (2021). Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia, 69 (3), 595–601. doi: https://doi.org/10.31925/farmacia.2021.3.23
- Pandi, A., Kalappan, V. M. (2021). Pharmacological and therapeutic applications of Sinapic acid –an updated review. Molecular Biology Reports, 48 (4), 3733–3745. doi: https://doi.org/10.1007/s11033-021-06367-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Olena Konovalova, Tetiana Omelkovets, Iryna Hurtovenko, Natalia Sydora, Mariia Kalista, Olha Shcherbakova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.