Synthesis, docking study and antimicrobial activity evaluation of pyridyl amides of thieno[2,3-d]pyrimidine-4-carboxylic acid

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.286008

Keywords:

thieno[2,3-d]pyrimidine, amides, coupling, docking study, thieno[2,3-d]pyrimidine, amides, coupling, docking study, antimicrobials

Abstract

The aim. The combination in one molecule of pharmacophore fragments of thieno[2,3-d]pyrimidine-4-carboxylic acids with the fragments of 2- or 4-aminopyrimidine by peptide coupling promoted acylation in order to develop the new drug-like molecules with antimicrobial activity.

Materials and methods. The molecular docking studies were performed with the AutoDock Vina та AutoDockTools 1.5.6 programs; TrmD Pseudomonas aeruginosa PDB ID – 5ZHN was used as the protein target. Synthetic methods of peptide coupling were used. 1H and 13C NMR spectra were recorded with a Varian-400 spectrometer at 400 MHz and Bruker Avance DRX 500 device at 500 MHz and 125 MHz in DMSO-d6 as a solvent, using TMS as the internal standard. LC-MS analysis of the compounds was carried out with Agilent 1100 HPLC з with atmospheric pressure chemical ionization (APCI). The studied derivates were tested in vitro for their antibacterial and anti-fungal activities using agar diffusion and serial dilutions resazurin-based microdilution assays (RBMA).

Results and discussion. By the combination of the pharmacophore fragments of thieno[2,3-d]pyrimidine-4-carboxylic acids with the fragments of 2- of 4-aminopyrimidine, the combinatorial library of amides was constructed. For this library of compounds, the potential of antimicrobial activity was revealed using docking studies to the TrmD enzyme isolated from P. aeruginosa. The peptide coupling promoted by 1,1'-carbonyldiimidazole was found to be effective for the synthesis of pyridyl amides of thieno[2,3-d]pyrimidine-4-carboxylic acids, and it allowed to combine these pharmacophores in one molecule. The results of antimicrobial activity study revealed the broad spectrum of antimicrobial activity for N-(pyridin-4-yl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidine-4-carboxamide (2g), while 5,6-dimethyl-N-(6-methylpyridin-2-yl)thieno[2,3-d]pyrimidine-4-carboxamide (2c) showed the best MIC value against the reference strain of Pseudomonas aeruginosa ATCC 10145. N-(6-Methylpyridin-2-yl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidine-4-carboxamide (2h) was also found to be active against Pseudomonas aeruginosa.

Conclusions. An effective method for the synthesis of pyridyl amides of thieno[2,3-d]pyrimidine-4-carboxylic acid has been developed. The amides molecular docking method showed their ability to inhibit TrmD enzyme isolated from P. aeruginosa; the further in vitro studies of the compounds showed the rationality of the further studies of the derivatives with 2-amino-6-methylpyridine in amide substituent because this fragment favoured the selectivity against Pseudomonas aeruginosa

Supporting Agency

  • Ministry of Health Care of Ukraine at the expense of the State Budget in framework # 2301020 "Scientific and scientific-technical activity in the field of health protection" on the topic "Synthesis and study of new thienopyrimidines for the detection of antimicrobial and related types of pharmacological activity" (Order of the Ministry of Health of Ukraine of November 17, 2020 No. 2651).

Author Biographies

Sergiy Vlasov, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmaceutical Chemistry

Hanna Severina, National University of Pharmacy

Doctor of Pharmaceutical Science, Professor

Department of Pharmaceutical Chemistry

Olena Vlasova, National University of Pharmacy

Department of Pharmaceutical Chemistry

Oleksandr Borysov, Institute of Organic Chemistry of National Academy of Sciences of Ukraine; Enamine Ltd.

PhD, Senior Researcher

Department of Medicinal Chemistry

Pavlo Shynkarenko, Enamine Ltd.

PhD

Olga Golovchenko, National University of Pharmacy

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Yulian Konechnyi , Danylo Halytsky Lviv National Medical University

PhD

Department of Microbiology

Victoriya Georgiyants, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor, Head of the Department

Department of Pharmaceutical Chemistry

References

  1. Malasala, S., Polomoni, A., Ahmad, Md. N., Shukla, M., Kaul, G., Dasgupta, A. et al. (2021). Structure based design, synthesis and evaluation of new thienopyrimidine derivatives as anti-bacterial agents. Journal of Molecular Structure, 1234, 130168. doi: https://doi.org/10.1016/j.molstruc.2021.130168
  2. Badiger, N. P., Gonkar, S. L., Shetty, N. S. (2015). Synthesis of some new thienopyrimidines and triazole fused thienopyrimidines and their antimicrobial activities. International Journal of Chemical and Pharmaceutical Sciences, 6 (1), 58–62.
  3. Triloknadh, S., Venkata Rao, C., Nagaraju, K., Hari Krishna, N., Venkata Ramaiah, C. et al. (2018). Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. Bioorganic & Medicinal Chemistry Letters, 28 (9), 1663–1669. doi: https://doi.org/10.1016/j.bmcl.2018.03.030
  4. Hill, P. J., Abibi, A., Albert, R., Andrews, B., Gagnon, M. M., Gao, N. et al. (2013). Selective Inhibitors of Bacterial t-RNA-(N1G37) Methyltransferase (TrmD) That Demonstrate Novel Ordering of the Lid Domain. Journal of Medicinal Chemistry, 56 (18), 7278–7288. doi: https://doi.org/10.1021/jm400718n
  5. Zhong, W., Koay, A., Ngo, A., Li, Y., Nah, Q., Wong, Y. H. et al. (2019). Targeting the Bacterial Epitranscriptome for Antibiotic Development: Discovery of Novel tRNA-(N1G37) Methyltransferase (TrmD) Inhibitors. ACS Infectious Diseases, 5 (3), 326–335. doi: https://doi.org/10.1021/acsinfecdis.8b00275
  6. Zhong, W., Pasunooti, K. K., Balamkundu, S., Wong, Y. H., Nah, Q., Gadi, V. et al. (2019). Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37-N1)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. Journal of Medicinal Chemistry, 62 (17), 7788–7805. doi: https://doi.org/10.1021/acs.jmedchem.9b00582
  7. Vlasov, S. V., Vlasova, O. D., Severina, H. I., Krolenko, K. Yu., Borysov, O. V., Abu Sharkh, A. I. M. et al. (2021). Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Scientia Pharmaceutica, 89 (4), 49. doi: https://doi.org/10.3390/scipharm89040049
  8. Vlasov, S., Krolenko, K., Severina, H., Vlasova, O., Borysov, O., Shynkarenko, P. (2023). Novel 4-methylthienopyrimidines as antimicrobial agents: synthesis, docking study and in vitro evaluation. Journal of Applied Pharmaceutical Science, 13 (4), 105–113. doi: https://doi.org/10.7324/japs.2023.102631
  9. Vlasova, O. D., Krolenko, K. Yu., Nechayev, M. A., Shynkarenko, P. E., Kabachnyy, V. I., Vlasov, S. V. (2019). Efficient method for the synthesis of novel substituted thieno[2,3-d]pyrimidine-4-carboxylic acids, their derivatization, and antimicrobial activity. Chemistry of Heterocyclic Compounds, 55 (2), 184–188. doi: https://doi.org/10.1007/s10593-019-02437-1
  10. Ono, N., Hironaga, H., Ono, K., Kaneko, S., Murashima, T., Ueda, T. et al. (1996). A new synthesis of pyrroles and porphyrins fused with aromatic rings. Journal of the Chemical Society, Perkin Transactions 1, 5, 417. doi: https://doi.org/10.1039/p19960000417
  11. Murashima, T., Fujita, K., Ono, K., Ogawa, T., Uno, H., Ono, N. (1996). A new facet of the reaction of nitro heteroaromatic compounds with ethyl isocyanoacetate. Journal of the Chemical Society, Perkin Transactions 1, 12, 1403–1407. doi: https://doi.org/10.1039/p19960001403
  12. Dang, Q., Carruli, E., Tian, F., Dang, F. W., Gibson, T., Li, W. et al. (2009). A tandem decarboxylation and inverse electron-demand Diels–Alder reaction of amino-thiophenecarboxylic acids with 1,3,5-triazines. Tetrahedron Letters, 50 (24), 2874–2876. doi: https://doi.org/10.1016/j.tetlet.2009.03.180
  13. Goto, T., Kondo, Y., Takuwa, T., Honjo, E., Hamaguchi, W., Hoshii, H., Shiraishi, N. (2015). Sulfur-containing bicyclic compound. Pat. 2015111876 U.S.
  14. Ahmed, I. A.; Watson, R. R., Preedy, V. R. (Ed.) (2019). Major dietary interventions for the management of liver disease. Dietary interventions in liver disease. Academic Press, 205–212. doi: https://doi.org/10.1016/b978-0-12-814466-4.00017-3
  15. Nakhaee, S., Mehrpour, O. (2022). Niacin. Reference Module in Biomedical Sciences, Elsevier, 755–761. doi: https://doi.org/10.1016/B978-0-12-824315-2.00113-5
  16. Sledge, C. L., Morgan, B. W.; Wexler, P. (Ed.) (2014). Niacin. Encyclopedia of Toxicology. Academic Press, 504–505. doi: https://doi.org/10.1016/B978-0-12-386454-3.00760-0
  17. WHO Report on the Global Tobacco Epidemic (2017). WHO, 135. Available at: http://apps.who.int/iris/bitstream/handle/10665/255874/9789241512824-eng.pdf;jsessionid=2C22C4F8E9201354D0A22AF1950AD744?sequence=1
  18. Kivell, B. M., Danielson, K.; Preedy, V. R. (Ed.) (2016). Neurological effects of nicotine, tobacco, and particulate matter. Neuropathology of drug addictions and substance misuse. Academic Press, 115–122. doi: https://doi.org/10.1016/B978-0-12-800213-1.00011-0
  19. Feldhammer, M., Ritchie, J. C. (2017). Anabasine Is a Poor Marker for Determining Smoking Status of Transplant Patients. Clinical Chemistry, 63 (2), 604–606. doi: https://doi.org/10.1373/clinchem.2016.265546
  20. Smulyan, H. (2018). The Beat Goes On: The Story of Five Ageless Cardiac Drugs. The American Journal of the Medical Sciences, 356 (5), 441–450. doi: https://doi.org/10.1016/j.amjms.2018.04.011
  21. Wu, P.-C., Chuang, M.-N., Choi, J., Chen, H., Wu, G., Ohno-Matsui, K. et al. (2018). Update in myopia and treatment strategy of atropine use in myopia control. Eye, 33 (1), 3–13. doi: https://doi.org/10.1038/s41433-018-0139-7
  22. Diacon, A., Miyahara, S., Dawson, R., Sun, X., Hogg, E., Donahue, K. et al. (2020). Assessing whether isoniazid is essential during the first 14 days of tuberculosis therapy: a phase 2a, open-label, randomised controlled trial. The Lancet Microbe, 1 (2), e84–e92. doi: https://doi.org/10.1016/s2666-5247(20)30011-2
  23. Remijn-Nelissen, L., Verschuuren, J. J. G. M., Tannemaat, M. R. (2022). The effectiveness and side effects of pyridostigmine in the treatment of myasthenia gravis: a cross-sectional study. Neuromuscular Disorders, 32 (10), 790–799. doi: https://doi.org/10.1016/j.nmd.2022.09.002
  24. Nuzum, D., Snider, Veverka, A. (2008). Long-acting nifedipine in the management of the hypertensive patient. Vascular Health and Risk Management, 4 (6), 1249–1257. doi: https://doi.org/10.2147/vhrm.s3661
  25. de Heus, R. A. A., Donders, R., Santoso, A. M. M., Olde Rikkert, M. G. M., Lawlor, B. A., Claassen, J. A. H. R. et al. (2019). Blood Pressure Lowering With Nilvadipine in Patients With Mild‐to‐Moderate Alzheimer Disease Does Not Increase the Prevalence of Orthostatic Hypotension. Journal of the American Heart Association, 8 (10). doi: https://doi.org/10.1161/jaha.119.011938
  26. Calvo, A., Zupelari-Gonçalves, P., Dionísio, T., Brozoski, D., Faria, F. A., Santos, C. (2017). Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8 and CYP2C9. Journal of Pain Research, 10, 1581–1589. doi: https://doi.org/10.2147/jpr.s138147
  27. Procopio, G., Chiuri, V. E., Giordano, M., Mantini, G., Maisano, R., Bordonaro, R. et al. (2020). Effectiveness of abiraterone acetate plus prednisone in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer in a large prospective real-world cohort: the ABItude study. Therapeutic Advances in Medical Oncology, 12. doi: https://doi.org/10.1177/1758835920968725
  28. Blackhall, F., Cappuzzo, F. (2016). Crizotinib: from discovery to accelerated development to front-line treatment. Annals of Oncology, 27, iii35–iii41. doi: https://doi.org/10.1093/annonc/mdw304
  29. Mitra, S., Muni, M., Shawon, N. J., Das, R., Emran, T. B., Sharma, R. et al. (2022). Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. Oxidative Medicine and Cellular Longevity, 2022, 1–22. doi: https://doi.org/10.1155/2022/7252882
  30. Riahi, A., Wurster, M., Lalk, M., Lindequist, U., Langer, P. (2009). Synthesis and antimicrobial activity of 4-hydroxy-4-(pyridyl)alk-3-en-2-ones. Bioorganic & Medicinal Chemistry, 17 (13), 4323–4326. doi: https://doi.org/10.1016/j.bmc.2009.05.023
  31. Sarova, D., Kapoor, A., Narang, R., Judge, V., Narasimhan, B. (2010). Dodecanoic acid derivatives: Synthesis, antimicrobial evaluation and development of one-target and multi-target QSAR models. Medicinal Chemistry Research, 20 (6), 769–781. doi: https://doi.org/10.1007/s00044-010-9383-5
  32. Karunanidhi, A., Ghaznavi-Rad, E., Jeevajothi Nathan, J., Joseph, N., Chigurupati, S., Mohd Fauzi, F. et al. (2019). Bioactive 2-(Methyldithio)Pyridine-3-Carbonitrile from Persian Shallot (Allium stipitatum Regel.) Exerts Broad-Spectrum Antimicrobial Activity. Molecules, 24 (6), 1003. doi: https://doi.org/10.3390/molecules24061003
  33. Ragab, A., Fouad, S. A., Ali, O. A. A., Ahmed, E. M., Ali, A. M., Askar, A. A., Ammar, Y. A. (2021). Sulfaguanidine Hybrid with Some New Pyridine-2-One Derivatives: Design, Synthesis, and Antimicrobial Activity against Multidrug-Resistant Bacteria as Dual DNA Gyrase and DHFR Inhibitors. Antibiotics, 10 (2), 162. doi: https://doi.org/10.3390/antibiotics10020162
  34. Antimicrobial susceptibility testing EUCAST disk diffusion method version 8.0 (2020). EUCAST, 22. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Manual_v_8.0_EUCAST_Disk_Test_2020.pdf
  35. Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2), 71–79. doi: https://doi.org/10.1016/j.jpha.2015.11.005
  36. Konechnyi, Y., Lozynskyi, A., Ivasechko, I., Dumych, T., Paryzhak, S., Hrushka, O., Partyka, U., Pasichnyuk, I., Khylyuk, D., Lesyk, R. (2023). 3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic Acid as a Potential Polypharmacological Agent. Scientia Pharmaceutica, 91 (1), 13. doi: https://doi.org/10.3390/scipharm91010013
Synthesis, docking study and antimicrobial activity evaluation of pyridyl amides of thieno[2,3-d]pyrimidine-4-carboxylic acid

Downloads

Published

2023-10-31

How to Cite

Vlasov, S., Severina, H., Vlasova, O., Borysov, O., Shynkarenko, P., Golovchenko, O., Konechnyi , Y., & Georgiyants, V. (2023). Synthesis, docking study and antimicrobial activity evaluation of pyridyl amides of thieno[2,3-d]pyrimidine-4-carboxylic acid. ScienceRise: Pharmaceutical Science, (5(45), 53–62. https://doi.org/10.15587/2519-4852.2023.286008

Issue

Section

Pharmaceutical Science