Application of the variability budget approach to the Dissolution test

Authors

DOI:

https://doi.org/10.15587/2519-4852.2024.299217

Keywords:

AQbD, target uncertainty, variability source, insignificance, normal analytical practice, dissolution, infinity point, uniformity of dosage form, metformin tablets, variability budget

Abstract

The aim. This study aimed to evaluate the completeness of our knowledge about the sources of variation in the Dissolution test with 100 % release by compiling a variability budget.

Materials and methods. The study was performed on 500 mg metformin tablets, using pharmacopoeial quality reagents, State Pharmacopoeia of Ukraine (SPhU) Metformin HCl reference standard, Pharmatest DT70 Dissolution apparatus, Perkin Elmer Lambda 35 spectrophotometer, Mettler Toledo XP 204 analytical balance, and ISO class A volumetric glassware. The SPhU metrological approach was employed.

Results and discussion. The variability budget was compiled based on the comparison of uncertainty estimates obtained from the requirements for maximum permissible variation in normal analytical practice (UNAP, bottom-up estimation) and experimental data (Uexp). This involved characterizing Metformin content in tablets using the Uniformity of Dosage Units (UDU) test as an independent method. The 100 % release of Metformin in the Dissolution test (infinity point) was proved by increasing the dissolution time. Having optimized Dissolution and UDU analytical procedures for variability budget compiling, we achieved insignificance of Uexp compared to the target uncertainty (Utg) for the Dissolution test in compliance testing. The differences in UDU and Dissolution mean results did not exceed UNAP for the release time of 45 and 60 min, i.e. uncertainty budget was proven. Uexp for the Dissolution test indicated the presence of an unknown statistically significant source of random variation, which, however, was less than Utg; therefore, the procedure is suitable for compliance testing.

Conclusion. Experimental results confirmed the completeness of our knowledge about sources of variation (absence of bias) for the Dissolution test with 100 % release. An essential condition for compiling the budget was the optimization of uncertainty of analytical procedures. For UDU, all significant sources of variation were within the expected range. Yet, there is a need for additional research to identify and manage an unknown source of practically significant random variation for the Dissolution test

Author Biographies

Dmytro Leontiev, State Enterprise “Ukrainian Scientific Pharmacopoeia Center for the Quality of Medicines”; National University of Pharmacy

Doctor of Pharmaceutical Sciences, Senior Researcher, Head of Department

Department of Validation and Reference Standards;

Professor

Department of Pharmaceutical Chemistry

Vitalii Asmolov, National University of Pharmacy; Noven Pharmaceuticals, Inc.

Postgraduate Student

Department of Pharmaceutical Chemistry;

Quality Control Scientist

Natalia Volovyk, State Enterprise “Ukrainian Scientific Pharmacopoeia Center for the Quality of Medicines”

PhD, Senior Researcher, Deputy Director for Quality

Oleksandr Gryzodub, State Enterprise “Ukrainian Scientific Pharmacopoeia Center for the Quality of Medicines”

Doctor of Chemical Sciences, Professor, Chief Researcher

Department of State Pharmacopoeia of Ukraine

References

  1. Decision rules applied to conformity assessment (2017). Eurolab Technical Report Available at: https://eurolab-d.de/files/eurolab_technical_report_no.1-decision_rules_applied_to_conformity_assessment-2017_final.pdf
  2. Borman, P., Campa, C., Delpierre, G., Hook, E., Jackson, P., Kelley, W. et al. (2021). Selection of Analytical Technology and Development of Analytical Procedures Using the Analytical Target Profile. Analytical Chemistry, 94 (2), 559–570. https://doi.org/10.1021/acs.analchem.1c03854
  3. Martin, G., Barnett, K. et. al. (2013). Lifecycle Management of Analytical Procedures: Method Development, Procedure Performance Qualification, and Procedure Performance Verification. Pharmacopeial Forum, 39 (5). Available at: http://www.usppf.com/pf/pub/index.html.
  4. Weitzel, J., Meija, J., LeBlond, D., Walfish, S. (2018). Measurement uncertainty for the pharmaceutical industry. Pharmacopeial Forum, 44 (1). Available at: https://www.researchgate.net/publication/322370632_Measurement_Uncertainty_for_the_Pharmaceutical_Industry
  5. Martin, G., Barnett, K., Burgess, C., Curry, P. D., Ermer, J., Gratzl, G. S. et al. (2017). Proposed New USP General Chapter: The Analytical Procedure Lifecycle <1220>. Pharmacopeial Forum, 43 (1). Available at: https://www.researchgate.net/publication/312062483_Proposed_new_USP_general_chapter_The_analytical_procedure_lifecycle_1220
  6. Burgess, C., Curry, P. LeBlond, D. J., Gratzl, G. S., Kovacs, E., Martin, G. P. et al. (2016). Fitnes for use: Decision rules and target measurement uncertainty. Pharmacopeial Forum, 42 (2). Available at: https://www.researchgate.net/publication/298822306_Fitness_for_use_Decision_rules_and_target_measurement_uncertainty
  7. Kovacs, E., Ermer, J., McGregor, P. L., Nethercote, P., Lobrutto, R., Martin, G. P. et al. (2016). Analytical control strategy. Pharmacopeial forum, 42 (5). Available at: https://www.researchgate.net/publication/308478035_Analytical_control_strategy
  8. Technical Review of MHRA Analytical Quality by Design Project (2019). Medicines and Healthcare products Regulatory Agency. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/807416/AQbD_Technical_Document_-_Final_04_June_2019.pdf
  9. Barnet, K., McGregor, P. et al. (2017). Analytical target profile: Structure and application throughout the analytical lifecycle. Pharmacopeial forum, 42 (5).
  10. Derzhavna Farmakopeia Ukrainy. Dopovnennia 2 (2018). 5.3.N.1. Statystychnyi analiz rezultativ khimichnoho eksperymentu. Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 77–112.
  11. Derzhavna Farmakopeia Ukrainy. Dopovnennia 4 (2020). 5.3.N.2. Validatsiia analitychnykh metodyk i vyprobuvan. Kharkiv: Derzhavne pidpryiemstvo "Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv", 123–236.
  12. Leontiev, D., Petrus, V., Gryzodub, O., Volovyk, N. (2018). Assay and uniformity of dosage units: non-uniformity effects and quality assurance. Farmakom, 2, 45–55. Available at: http://sphu.org/wp-content/uploads/2018/07/Farmacom_2_2018_correction.pdf
  13. Volovyk, N., Leontiev, D., Petrus, V., Gryzodub, O., Pidpruzhnykov, Y. (2020). Development of an advanced strategy on the assay method transfer. ScienceRise: Pharmaceutical Science, 6 (28), 56–67. https://doi.org/10.15587/2519-4852.2020.221721
  14. Leontiev, D., Petrus, V., Volovyk, N., Gryzodub, O. (2020). Validation of the spectrophotometric procedure for desloratadine assay in tablets applying the uncertainty concept of the State Pharmacopoeia of Ukraine. EUREKA: Health Sciences, 6, 74–87. https://doi.org/10.21303/2504-5679.2020.001527
  15. Leontiev, D., Petrus, V., Volovyk, N., Gryzodub, O. (2020). A study of the influence of the test sample inhomogeneity on variability in assay results of desloratadine in film-coated tablets. ScienceRise: Pharmaceutical Science, 5 (27), 43–51. https://doi.org/10.15587/2519-4852.2020.215287
  16. European Pharmacopoeia 11th edition. Vol. 1 (2023). Dissolution test for solid dosage forms 2.9.3. Strasbourg: European Directorate for the Quality of Medicines, 1, 348–335.
  17. European Pharmacopoeia 11th edition. Vol. 1 (2023). Recommendations on dissolution testing 5.17.1. Strasbourg: European Directorate for the Quality of Medicines, 837–839.
  18. United States Pharmacopeia (2023). The Dissolution Procedure: Development and Validation <1092>. Currently Official on 19.09.2023. Available at: https://www.drugfuture.com/Pharmacopoeia/USP32/pub/data/v32270/usp32nf27s0_c1092.html
  19. Sano, A. Y., Lourenço, F. R. (2023). Measurement uncertainty arising from sampling and analytical steps of dissolution test of prednisone tablets. Journal of Pharmaceutical and Biomedical Analysis, 234. https://doi.org/10.1016/j.jpba.2023.115501
  20. Paakkunainen, M., Matero, S., Ketolainen, J., Lahtela-Kakkonen, M., Poso, A., Reinikainen, S.-P. (2009). Uncertainty in dissolution test of drug release. Chemometrics and Intelligent Laboratory Systems, 97 (1), 82–90. https://doi.org/10.1016/j.chemolab.2008.12.004
  21. Gryzodub, O., Leontiev, D., Levin, M., Asmolova, N., Vyrova, H. (2004). Realization of «Content uniformity» and «Dissolution» tests by chromatographic methods under production quality control. General experimental scheme. Journal of organic and pharmaceutical chemistry, 2 (1 (5)), 24–34.
  22. DeStefano, A. J., Hauck, W. W., Stippler, E. S., Brown, W. E., Li, C., Huang, G. G. et al. (2010). Establishing New Acceptance Limits for Dissolution Performance Verification of USPC Apparatus 1 and 2 Using USPC Prednisone Tablets Reference Standard. Pharmaceutical Research, 28 (3), 505–516. https://doi.org/10.1007/s11095-010-0295-3
  23. Bai, G., Armenante, P. M. (2009). Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing. Journal of Pharmaceutical Sciences, 98 (4), 1511–1531. https://doi.org/10.1002/jps.21512
  24. Gryzodub, O., Arkhipova, N., Kozhushko, G., Zvolinskaya, N., Leontiev, D. (2003). Atestatsiia promyslovykh tabletok yak testovykh zrazkiv dlia profesiinoho testuvannia laboratorii z kontroliu yakosti likarskykh zasobiv: urakhuvannia faktoriv neodnoridnosti. Farmakom, 3, 5–19. Available at: http://sphu.org/en/journal-pharmacom
  25. Technical Guide for the Elaboration of Monographs (2022). European Directorate for the Quality of Medicines & HealthCare. Council of Europe. Strasbourg.
  26. European Pharmacopoeia 11th edition. Vol. 1 (2023). Absorption Spectrophotometry, ultraviolet and visible 2.2.25. Strasbourg: European Directorate for the Quality of Medicines, 48–52.
  27. General European OMCL Network (GEON). Quality management document PA/PH/OMCL (19)100 R1 (2020). Qualification of UV-visible spectrophotometers. Available at: https://www.edqm.eu/documents/52006/128968/omcl-annex-3-qualification-of-uv-visible-spectrophotometers.pdf/34fa3c33-7383-dedd-c1b6-c775130a1602?t=1628491783930
  28. The use of mechanical calibration of dissolution apparatus 1 and 2 – current good manufacturing practice (2010). FDA Guidance for industry. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-mechanical-calibration-dissolution-apparatus-1-and-2-current-good-manufacturing-practice-cgmp
  29. ASTM Standard practice for qualification of basket and paddle dissolution apparatus E20503-07. Edition 1 (2015). Available at: https://webstore.ansi.org/standards/astm/astme250307
  30. Leontiev, D., Volovyk, N., Gryzodub, O. (2021). Metrological aspects of the certification of reference standards of the State Pharmacopoeia of Ukraine. Trends & Challenges in Ensuring Quality in Analytical Measurements. Prague, 54–55. Available at: https://www.eurachem.org/images/stories/workshops/2021_05_QA/pdf/abstracts/Book_of_Abstracts_final.pdf
  31. European Pharmacopoeia 11th edition. Vol. 1 (2023). Uniformity of dosage units 2.9.40. Strasbourg: European Directorate for the Quality of Medicines, 421–423.
  32. Ellison, S., Williams, A. (Eds.) (2012). Eurachem/CITAC Guide: Quantifying uncertainty in analytical measurement. Available at: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf
  33. European Pharmacopoeia 11th edition. Vol. 2 (2023). Monograph Metformin hydrochloride. Strasbourg: European Directorate for the Quality of Medicines, 3359–3360.
  34. Chapter Application of Analytical Quality by Design to Pharmacopoeial Methods (2022). The British Pharmacopoeia Supplementary. Public consultation. Available at: https://www.pharmacopoeia.com/file/AQbD_in_the_BP-Supplementary_Chapter.pdf
  35. Leontiev, D., Gryzodub, O., Arkhipova, N., Zvolynska, N., Dotsenko, T, Denysenko, N. (2003). Vidtvoriuvanist farmakopeinykh metodyk VERKh pry kilkisnomu vyznachenni likarskykh zasobiv u riznykh laboratoriiakh: rol nevyznachenosti probopidhotovky. Farmakom, 4, 4–12. Available at: http://sphu.org/en/journal-pharmacom
  36. Gryzodub, O., Zvolinskaya, N., Arkhipova, N., Leontiev, D., Denysenko, N., Dotsenko, T. (2004). Vosproizvodimost farmakopeynyih spektrofotometricheskih metodik kolichestvennogo opredeleniya lekarstvennyih sredstv v raznyih laboratoriyah. Farmakom, 2, 20–34.
Application of the variability budget approach to the Dissolution test

Downloads

Published

2024-02-29

How to Cite

Leontiev, D., Asmolov, V., Volovyk, N., & Gryzodub, O. (2024). Application of the variability budget approach to the Dissolution test . ScienceRise: Pharmaceutical Science, (1(47), 49–59. https://doi.org/10.15587/2519-4852.2024.299217

Issue

Section

Pharmaceutical Science