Dichloroacetic acid derivatives as potential anti-tumor and anti-inflammatory agents

Authors

DOI:

https://doi.org/10.15587/2519-4852.2024.299229

Keywords:

dichloroacetate, dichloroacetic acid, dichloroacetamide, hybrid molecules, antitumor activity, anti-inflammatory activity, cholesterol, tumors, apoptosis, chemotherapy

Abstract

The aim. This review aims to provide a comprehensive understanding of dichloroacetic acid derivatives. We aim to cover all aspects of these compounds, including their chemical properties, various synthesis methods, and their wide range of applications in medicinal chemistry. By exploring their diverse roles in drug development, we aim to highlight their importance and potential in shaping future pharmaceutical innovation.

Materials and methods. Bibliosemantic and analytical methods are used in the research.

Results. Our studies confirm the potential effectiveness of dichloroacetic acid and its derivatives in the treatment of cancer and other diseases. These compounds can induce the apoptosis process, which is the programmed cell death, and inhibit the cancer cells' growth. This is particularly effective when dichloroacetic acid and its derivatives are used in combination with other therapeutic methods, as indicated in the patents cited in our study. Dichloroacetic acid and its derivatives have also shown the ability to lower blood glucose and cholesterol levels. This indicates the possibility of their use for diabetes, hyperlipidemia, and lactic acidosis treatment. Diabetes, hyperlipidemia, and lactic acidosis are serious conditions that can lead to significant health problems. Therefore, the possibility of using dichloroacetic acid and its derivatives for the treatment of these conditions opens new perspectives in medical science.

Conclusions. Our findings point to the prospects of further research in the field of new therapy methods development and the use of dichloroacetic acid derivatives as potential drugs to improve the effectiveness of cancer and other diseases treatment. We believe that these compounds have great potential for further study and may play an important role in future medical innovation

Author Biographies

Liubomyr Havryshchuk, Ivano-Frankivsk National Medical University

Assistant

Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

Volodymyr Horishny, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Nadiіa Rushchak, Ivano-Frankivsk National Medical University

Assistant

Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

Roman Lesyk, University of Information Technology and Management in Rzeszow; Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical, Organic and Bioorganic Chemistry

References

  1. Singh, Y., Singh, R. (2008). Theoretical studies of different tautomers of anti-cancer drug: dichloroacetate. Pakistan Journal of Pharmaceutical Sciences, 21 (4), 390–395.
  2. Dichloressigsäure, Natriumdichloracetat. Kurzfassung toxikologische bewertungen. Nr. 188 b Dichloressigsäure, Natriumdichloracetat 03/06, BG-Chemie.
  3. Tao, L., Kerou, W., Jie, C., Bingliang, Z., Li, Z., Dan, C. et al. (2018). Pat. No. CN108658756A. Method for preparing dichloroacetic acid by selective dechlorination of trichloroacetic acid. Xian Catalyst New Mat CO LTD (China); published: 16.10.2018.
  4. Wheeler, A. S., Smith, S. C. (1923). Direct conversion of derivatives of dichloro-acetic acid into derivatives of trichloro-acetic acid. Journal of the American Chemical Society, 45 (8), 1994–1998. https://doi.org/10.1021/ja01661a021
  5. Katon, J. E., Stout, T. H., Hess, G. G. (1986). The Infrared Spectra of Dichloroacetic Acid Derivatives: Characteristic Absorption Frequencies of the -CHCl2 Group. Applied Spectroscopy, 40 (1), 1–3. https://doi.org/10.1366/0003702864815501
  6. Antonius, C., Joannes, M. (1985). Pat. No. CA1189867A. Preparation of derivatives of dichloroacetic acid esters. Stamicarbon (NL); published 02.07.1985.
  7. Darensbourg, D. J., Ortiz, C. G., Kamplain, J. W. (2004). A New Water-Soluble Phosphine Derived from 1,3,5-Triaza-7-phosphaadamantane (PTA), 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane. Structural, Bonding, and Solubility Properties. Organometallics, 23 (8), 1747–1754. https://doi.org/10.1021/om0343059
  8. Krogstad, D. A., Ellis, G. S., Gunderson, A. K., Hammrich, A. J., Rudolf, J. W., Halfen, J. A. (2007). Two new water-soluble derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA): Synthesis, characterization, X-ray analysis and solubility studies of 3,7-diformyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane and 1-pyridylmethyl-3,5-diaza-1-azonia-7-phosphatricyclo[3.3.1.1]decane bromide. Polyhedron, 26 (15), 4093–4100. https://doi.org/10.1016/j.poly.2007.05.003
  9. Darensbourg, D. J., Robertson, J. B., Larkins, D. L., Reibenspies, J. H. (1999). Water-Soluble Organometallic Compounds. 7.1Further Studies of 1,3,5-Triaza-7-Phosphaadamantane Derivatives of Group 10 Metals, Including Metal Carbonyls and Hydrides. Inorganic Chemistry, 38 (10), 2473–2481. https://doi.org/10.1021/ic981243j
  10. Guerrero, E., Miranda, S., Lüttenberg, S., Fröhlich, N., Koenen, J.-M., Mohr, F. et al. (2013). trans-Thionate Derivatives of Pt(II) and Pd(II) with Water-Soluble Phosphane PTA and DAPTA Ligands: Antiproliferative Activity against Human Ovarian Cancer Cell Lines. Inorganic Chemistry, 52 (11), 6635–6647. https://doi.org/10.1021/ic4006746
  11. Carreira, M., Calvo-Sanjuán, R., Sanaú, M., Marzo, I., Contel, M. (2012). Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand As Potential Anticancer Agents. Organometallics, 31 (16), 5772–5781. https://doi.org/10.1021/om3006239
  12. Marvelli, L., Ferretti, V., Bertolasi, V., Lampronti, I., Gambari, R., Trapella, C. et al. (2019). A new amido-phosphine of dichloroacetic acid as an active ligand for metals of pharmaceutical interest. Synthesis, characterization and tests of antiproliferative and pro-apoptotic activity. Journal of Inorganic Biochemistry, 199, 110787. https://doi.org/10.1016/j.jinorgbio.2019.110787
  13. Arjunan, V., Mohan, S., Subramanian, S., Thimme Gowda, B. (2004). Synthesis, Fourier transform infrared and Raman spectra, assignments and analysis of N-(phenyl)- and N-(chloro substituted phenyl)-2,2-dichloroacetamides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (5), 1141–1159. https://doi.org/10.1016/j.saa.2003.07.003
  14. Arjunan, V., Senthilkumari, S., Ravindran, P., Mohan, S. (2014). Synthesis, FTIR and FT-Raman spectral analysis and structure–activity relations of N-(4-bromophenyl)-2,2-dichloroacetamide by DFT studies. Journal of Molecular Structure, 1064, 15–26. https://doi.org/10.1016/j.molstruc.2014.01.091
  15. Arjunan, V., Ravindran, P., Subhalakshmi, K., Mohan, S. (2009). Synthesis, structural, vibrational and quantum chemical investigations of N-(2-methylphenyl)-2,2-dichloroacetamide and N-(4-methylphenyl)-2,2-dichloroacetamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74 (3), 607–616. https://doi.org/10.1016/j.saa.2009.07.008
  16. Arjunan, V., Rani, T., Mythili, C. V., Mohan, S. (2011). Synthesis, FT-IR, FT-Raman and quantum chemical investigations of N-(3-methylphenyl)-2,2-dichloroacetamide. European Journal of Chemistry, 2 (1), 70–76. https://doi.org/10.5155/eurjchem.2.1.70-76.286
  17. Li, T., Yang, Y., Cheng, C., Tiwari, A. K., Sodani, K., Zhao, Y. et al. (2012). Design, synthesis and biological evaluation of N-arylphenyl-2,2-dichloroacetamide analogues as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters, 22 (23), 7268–7271. https://doi.org/10.1016/j.bmcl.2012.07.057
  18. Li, T. W., Yang, Y. C., Cheng, C. M., Wang, D. C., Lu, A. J., Zhao, Y. F. (2012). Multi-substituted N-phenyl-2, 2-dichloroacetamide analogues as anti-cancer drugs: design, synthesis, and biological evaluation. Yao xue xue bao = Acta pharmaceutica Sinica, 47 (3), 354–363.
  19. Yang, Y., Shang, P., Cheng, C., Wang, D., Yang, P., Zhang, F. et al. (2010). Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 45 (9), 4300–4306. https://doi.org/10.1016/j.ejmech.2010.06.032
  20. Porrès, L., Mongin, O., Katan, C., Charlot, M., Pons, T., Mertz, J., Blanchard-Desce, M. (2003). Enhanced Two-Photon Absorption with Novel Octupolar Propeller-Shaped Fluorophores Derived from Triphenylamine. Organic Letters, 6 (1), 47–50. https://doi.org/10.1021/ol036041s
  21. Fereidoonnezhad, M., Faghih, Z., Mojaddami, A., Tabaei, S. M. H., Rezaei, Z. (2016). Novel approach synthesis, molecular docking, and cytotoxic activity evaluation of N-phenyl-2,2-dichloroacetamide derivatives as anticancer agents. Journal of Sciences, Islamic Republic of Iran, 27 (1), 39–49.
  22. Havryshchuk, L. M., Horishny, V. Y., Lesyk, R. B. (2022). (2022). Synthesis of dichloroacetamides and study of their anti-tumor activity. Farmatsevtychnyi Zhurnal, 4, 42–49. https://doi.org/10.32352/0367-3057.4.22.05
  23. Zhang, S.-L., Zhang, W., Xiao, Q., Yang, Z., Hu, X., Wei, Z., Tam, K. Y. (2016). Development of dichloroacetamide pyrimidines as pyruvate dehydrogenase kinase inhibitors to reduce cancer cell growth: synthesis and biological evaluation. RSC Advances, 6 (82), 78762–78767. https://doi.org/10.1039/c6ra14060b
  24. Norman, M. H., Chen, N., Chen, Z., Fotsch, C., Hale, C., Han, N. et al. (2000). Structure-Activity Relationships of a Series of Pyrrolo[3,2-d]pyrimidine Derivatives and Related Compounds as Neuropeptide Y5 Receptor Antagonists. Journal of Medicinal Chemistry, 43 (22), 4288–4312. https://doi.org/10.1021/jm000269t
  25. Baindur, N., Chadha, N., Player, M. R. (2003). Solution-Phase Synthesis of a Library of 3,5,7-Trisubstituted 3H-[1,2,3]triazolo[4,5-d]pyrimidines. Journal of Combinatorial Chemistry, 5 (5), 653–659. https://doi.org/10.1021/cc020110x
  26. Uden, P. C., Miller, J. W. (1983). Chlorinated acids and chloral in drinking water. Journal AWWA, 75 (10), 524–527. https://doi.org/10.1002/j.1551-8833.1983.tb05213.x
  27. Mughal, F. H. (1992). Chlorination of drinking water and cancer: a review. Journal of environmental pathology, toxicology, and oncology: official organ of the International Society for Environmental Toxicology and Cancer, 11 (5-6), 287–292.
  28. Y Yan, Z., Henderson, G. N., James, M. O., Stacpoole, P. W. (1997). Determination of dichloroacetate and its metabolites in human plasma by gas chromatography–mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 703 (1-2), 75–84. https://doi.org/10.1016/s0378-4347(97)00404-0
  29. Stacpoole, P. W., Henderson, G. N., Yan, Z., James, M. O. (1998). Clinical pharmacology and toxicology of dichloroacetate. Environmental Health Perspectives, 106 (4), 989–994. https://doi.org/10.1289/ehp.98106s4989
  30. Dichloressigsäure und ihre Salze [MAK Value Documentation in German language, 2010] (2012). The MAK-Collection for Occupational Health and Safety, 1-136. https://doi.org/10.1002/3527600418.mb7943verd0049
  31. Hartwig, A. (2021). Dichloroacetic acid and its salts: MAK Value Documentation, supplement – Translation of the German version from 2019. MAK Commission. Wiley-VCH Verlag.
  32. Cornett, R., James, M. O., Henderson, G. N., Cheung, J., Shroads, A. L., Stacpoole, P. W. (1999). Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochemical and biophysical research communications, 262 (3), 752–756. https://doi.org/10.1006/bbrc.1999.1287
  33. Shroads, A. L., Guo, X., Dixit, V., Liu, H.-P., James, M. O., Stacpoole, P. W. (2007). Age-Dependent Kinetics and Metabolism of Dichloroacetate: Possible Relevance to Toxicity. Journal of Pharmacology and Experimental Therapeutics, 324 (3), 1163–1171. https://doi.org/10.1124/jpet.107.134593
  34. Jordi, A. D., Alhelí, R. C., Alba, M. F., Luís, I. (2015). Pat. No. WO2015135926A1. Dichloroacetate compounds for use in treating a disease caused by a glycolytic parasite. Univ Barcelona Autonoma [ES]; published: 17.09.2015.
  35. Madhok, B. M., Yeluri, S., Perry, S. L., Hughes, T. A., Jayne, D. G. (2010). Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. British Journal of Cancer, 102(12), 1746–1752. https://doi.org/10.1038/sj.bjc.6605701
  36. Stockwin, L. H., Yu, S. X., Borgel, S., Hancock, C., Wolfe, T. L., Phillips, L. R. et al. (2010). Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. International Journal of Cancer, 127 (11), 2510–2519. https://doi.org/10.1002/ijc.25499
  37. Soo, K. K., Jun, P. Y., Hyun-Nam, S., Youn, K. D., Woo, K. J., Kyoung-Suk, C. et al. (2012). Pat. No. WO2012008711A2. Erlotinib dichloroacetate and anti-cancer agent comprising the same. Celltrion Chemical Research Institute [Korea]; published: 19.01.2012.
  38. Abdelmalak, M., Lew, A., Ramezani, R., Shroads, A. L., Coats, B. S., Langaee, T. et al. (2013). Long-term safety of dichloroacetate in congenital lactic acidosis. Molecular Genetics and Metabolism, 109 (2), 139–143. https://doi.org/10.1016/j.ymgme.2013.03.019
  39. Stacpoole, P. W., Moore, G. W., Kornhauser, D. M. (1978). Metabolic Effects of Dichloroacetate in Patients with Diabetes Mellitus and Hyperlipoproteinemia. New England Journal of Medicine, 298 (10), 526–530. https://doi.org/10.1056/nejm197803092981002
  40. Feldhoff, R. C., Taylor, J. M., Jefferson, L. S. (1977). Synthesis and secretion of rat albumin in vivo, in perfused liver, and in isolated hepatocytes. Effects of hypophysectomy and growth hormone treatment. Journal of Biological Chemistry, 252 (11), 3611–3616. https://doi.org/10.1016/s0021-9258(17)40296-1
  41. Misbin, R. I. (1979). Effects of Dichloroacetate on Lipid Metabolism in Isolated Rat Liver Cells. Diabetes, 28 (4), 265–271. https://doi.org/10.2337/diab.28.4.265
  42. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R. et al. (2007). A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 11 (1), 37–51. https://doi.org/10.1016/j.ccr.2006.10.020
  43. Bowker-Kinley, M. M., Davis, I. W., Wu, P., Harris, A. R., Popov, M. K. (1998). Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal, 329 (1), 191–196. https://doi.org/10.1042/bj3290191
  44. Knoechel, T. R., Tucker, A. D., Robinson, C. M., Phillips, C., Taylor, W., Bungay, P. J. et al. (2005). Regulatory Roles of the N-Terminal Domain Based on Crystal Structures of Human Pyruvate Dehydrogenase Kinase 2 Containing Physiological and Synthetic Ligands,. Biochemistry, 45 (2), 402–415. https://doi.org/10.1021/bi051402s
  45. Michelakis, E. D., Webster, L., Mackey, J. R. (2008). Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. British Journal of Cancer, 99 (7), 989–994. https://doi.org/10.1038/sj.bjc.6604554
  46. Stacpoole, P. W., Harwood, H. J., Jr, Cameron, D. F., Curry, S. H., Samuelson, D. A., Cornwell, P. E., Sauberlich, H. E. (1990). Chronic toxicity of dichloroacetate: possible relation to thiamine deficiency in rats. Fundamental and applied Toxicology: official journal of the Society of Toxicology, 14 (2), 327–337. https://doi.org/10.1016/0272-0590(90)90212-3
  47. Spruijt, L., Naviaux, R. K., McGowan, K. A., Nyhan, W. L., Sheean, G., Haas, R. H., Barshop, B. A. (2001). Nerve conduction changes in patients with mitochondrial diseases treated with dichloroacetate. Muscle & Nerve, 24 (7), 916–924. https://doi.org/10.1002/mus.1089
  48. Flavin, D. F. (2010). Non-Hodgkin’s Lymphoma Reversal with Dichloroacetate. Journal of Oncology, 2010, 1–4. https://doi.org/10.1155/2010/414726
  49. Khan, A. (2013). Case Report of Long Term Complete Remission of Metastatic Renal Squamous Cell Carcinoma after Palliative Radiotherapy and Adjuvant Dichloroacetate. Advances in Cancer: Research & Treatment, 1–7. https://doi.org/10.5171/2012.441895
  50. Corraliza, I. M., Campo, M. L., Soler, G., Modolell, M. (1994). Determination of arginase activity in macrophages: a micromethod. Journal of Immunological Methods, 174 (1-2), 231–235. https://doi.org/10.1016/0022-1759(94)90027-2
  51. Azuma, M., Ebihara, T., Oshiumi, H., Matsumoto, M., Seya, T. (2012). Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c+/CD8α+dendritic cells. OncoImmunology, 1 (5), 581–592. https://doi.org/10.4161/onci.19893
  52. Akazawa, T., Ebihara, T., Okuno, M., Okuda, Y., Shingai, M., Tsujimura, K. et al. (2007). Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proceedings of the National Academy of Sciences, 104 (1), 252–257. https://doi.org/10.1073/pnas.0605978104
  53. Ohashi, T., Akazawa, T., Aoki, M., Kuze, B., Mizuta, K., Ito, Y., Inoue, N. (2013). Dichloroacetate improves immune dysfunction caused by tumor‐secreted lactic acid and increases antitumor immunoreactivity. International Journal of Cancer, 133 (5), 1107–1118. https://doi.org/10.1002/ijc.28114
  54. Cheong, H., Lu, C., Lindsten, T., Thompson, C. B. (2012). Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnology, 30 (7), 671–678. https://doi.org/10.1038/nbt.2285
  55. Abemayor, E., Kovachich, G. B., Haugaard, N. (1984). Effects of Dichloroacetate on Brain Pyruvate Dehydrogenase. Journal of Neurochemistry, 42 (1), 38–42. https://doi.org/10.1111/j.1471-4159.1984.tb09694.x
  56. Wong, J. Y. Y., Huggins, G. S., Debidda, M., Munshi, N. C., De Vivo, I. (2008). Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecologic Oncology, 109 (3), 394–402. https://doi.org/10.1016/j.ygyno.2008.01.038
  57. Duan, Y., Zhao, X., Ren, W., Wang, X., Yu, K. F., Li, D. et al. (2013). Antitumor activity of dichloroacetate on C6 glioma cell: in vitro and in vivo evaluation. OncoTargets and Therapy, 6, 189–198. https://doi.org/10.2147/ott.s40992
  58. Kolesnik, D. L., Pyaskovskaya, O. N., Yurchenko, O. V., Solyanik, G. I. (2023). Metformin enhances antitumor action of sodium dichloroacetate against glioma C6. Experimental Oncology, 41 (2), 123–129. https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-2.1306
  59. Kolesnik, D. L., Pyaskovskaya, O. N., Boichuk, I. V., Solyanik, G. I. (2014). Hypoxia enhances antitumor activity of dichloroacetate. Experimental oncology, 36 (4), 231–235.
  60. Seliger, C., Renner, K. (2017). P08.52 Metformin as adjuvant therapy for glioma. Neuro-Oncology, 19 (3), iii65. https://doi.org/10.1093/neuonc/nox036.241
  61. Quaile, M. P., Melich, D. H., Jordan, H. L., Nold, J. B., Chism, J. P., Polli, J. W. et al. (2010). Toxicity and toxicokinetics of metformin in rats. Toxicology and Applied Pharmacology, 243 (3), 340–347. https://doi.org/10.1016/j.taap.2009.11.026
  62. Prokhorova, I. V., Pyaskovskaya, O. N., Kolesnik, D. L., Solyanik, G. I. (2018). Influence of metformin, sodium dichloroacetate and their combination on the hematological and biochemical blood parameters of rats with gliomas C6. Experimental oncology, 40 (3), 205–210. https://doi.org/10.31768/2312-8852.2018.40(3):205-210
  63. Pustylnikov, S., Costabile, F., Beghi, S., Facciabene, A. (2018). Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Translational Research, 202, 35–51. https://doi.org/10.1016/j.trsl.2018.07.013
  64. Grazioli, S., Pugin, J. (2018). Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00832
  65. Torres-Cavazos, Z., Franco-Molina, M. A., Santana-Krímskaya, S. E., Rodríguez-Padilla, C., Kawas-Garza, J. R., Hernández-Vidal, G. et al. (2020). In Vivo Evaluation of the Antitumor and Immunogenic Properties of Silver and Sodium Dichloroacetate Combination against Melanoma. Journal of Nanomaterials, 2020, 1–8. https://doi.org/10.1155/2020/3741019
  66. Bonner, M. Y., Karlsson, I., Rodolfo, M., Arnold, R. S., Vergani, E., Arbiser, J. L. (2016). Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanomain vivo. Oncotarget, 7 (11), 12857–12868. https://doi.org/10.18632/oncotarget.7289
  67. Vergani, E., Vallacchi, V., Frigerio, S., Deho, P., Mondellini, P., Perego, P. et al. (2011). Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 13 (12), 1132-IN17. https://doi.org/10.1593/neo.111102
  68. Stacpoole, P. W. (1989). The pharmacology of dichloroacetate. Metabolism, 38 (11), 1124–1144. https://doi.org/10.1016/0026-0495(89)90051-6
  69. Stacpoole, P. W., Gilbert, L. R., Neiberger, R. E., Carney, P. R., Valenstein, E., Theriaque, D. W., Shuster, J. J. (2008). Evaluation of Long-term Treatment of Children With Congenital Lactic Acidosis With Dichloroacetate. Pediatrics, 121 (5), e1223–e1228. https://doi.org/10.1542/peds.2007-2062
  70. Ishiguro, T., Ishiguro, M., Ishiguro, R., Iwai, S. (2012). Cotreatment with dichloroacetate and omeprazole exhibits a synergistic antiproliferative effect on malignant tumors. Oncology Letters, 3 (3), 726–728. https://doi.org/10.3892/ol.2012.552
  71. Michelakis, E. D., Sutendra, G., Dromparis, P., Webster, L., Haromy, A., Niven, E. et al. (2010). Metabolic Modulation of Glioblastoma with Dichloroacetate. Science Translational Medicine, 2 (31), 31–34. https://doi.org/10.1126/scitranslmed.3000677
  72. Tong, J., Xie, G., He, J., Li, J., Pan, F., Liang, H. (2011). Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer. Journal of Biomedicine and Biotechnology, 2011, 1–7. https://doi.org/10.1155/2011/740564
  73. Longley, D. B., Harkin, D. P., Johnston, P. G. (2003). 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 3 (5), 330–338. https://doi.org/10.1038/nrc1074
  74. Lu, X., Zhou, D., Hou, B., Liu, Q.-X., Chen, Q., Deng, X.-F., Yu, Z.-B., Dai, J.-G., Zheng, H. (2018). Dichloroacetate enhances the antitumor efficacy of chemotherapeutic agents via inhibiting autophagy in non-small-cell lung cancer. Cancer Management and Research, 10, 1231–1241. https://doi.org/10.2147/cmar.s156530
  75. Lin, G., Hill, D. K., Andrejeva, G., Boult, J. K. R., Troy, H., Fong, A.-C. L. F. W. T. et al. (2014). Dichloroacetate induces autophagy in colorectal cancer cells and tumours. British Journal of Cancer, 11 1(2), 375–385. https://doi.org/10.1038/bjc.2014.281
  76. Gong, F., Peng, X., Sang, Y., Qiu, M., Luo, C., He, Z. et al. (2013). Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling. Cell Death & Disease, 4 (11), e913–e913. https://doi.org/10.1038/cddis.2013.438
  77. Usman, M., Arjmand, F., Khan, R. A., Alsalme, A., Ahmad, M., Tabassum, S. (2017). Biological evaluation of dinuclear copper complex/dichloroacetic acid cocrystal against human breast cancer: design, synthesis, characterization, DFT studies and cytotoxicity assays. RSC Adv., 7 (76), 47920–47932. https://doi.org/10.1039/c7ra08262b
  78. Suh, Y., Amelio, I., Guerrero Urbano, T., Tavassoli, M. (2014). Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death & Disease, 5 (1), e1018–e1018. https://doi.org/10.1038/cddis.2013.548
  79. Chu, Q. S.-C., Sangha, R., Spratlin, J., J. Vos, L., Mackey, J. R., McEwan, A. J. B. et al. (2015). A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Investigational New Drugs, 33 (3), 603–610. https://doi.org/10.1007/s10637-015-0221-y
  80. Golding, J. P., Wardhaugh, T., Patrick, L., Turner, M., Phillips, J. B., Bruce, J. I., Kimani, S. G. (2013). Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. British Journal of Cancer, 109 (4), 976–982. https://doi.org/10.1038/bjc.2013.391
  81. Alkarakooly, Z., Al-Anbaky, Q. A., Kannan, K., Ali, N. (2018). Metabolic reprogramming by Dichloroacetic acid potentiates photodynamic therapy of human breast adenocarcinoma MCF-7 cells. PLOS ONE, 13 (10), e0206182. https://doi.org/10.1371/journal.pone.0206182
  82. Jackson, S. (2008). Pat. No. US2008221211A1. Method of treatment of neurological injury or cancer by administration of dichloroacetate. Published: 11.09.2008.
  83. Addala, E., Rafiei, H., Das, S., Bandy, B., Das, U., Karki, S. S., Dimmock, J. R. (2017). 3,5-Bis(3-dimethylaminomethyl-4-hydroxybenzylidene)-4-piperidone and related compounds induce glutathione oxidation and mitochondria-mediated cell death in HCT-116 colon cancer cells. Bioorganic & Medicinal Chemistry Letters, 27 (16), 3669–3673. https://doi.org/10.1016/j.bmcl.2017.07.018
  84. Warburg, O. (1956). On the Origin of Cancer Cells. Science, 123 (3191), 309–314. https://doi.org/10.1126/science.123.3191.309
  85. Fedorchuk, A. G., Pyaskovskaya, O. N., Gorbik, G. V., Prokhorova, I. V., Kolesnik, D. L., Solyanik, G. I. (2016). Effectiveness of sodium dichloroacetate against glioma C6 depends on administration schedule and dosage. Experimental oncology, 38 (2), 80–83. https://doi.org/10.31768/2312-8852.2016.38(2):80-83
  86. Tataranni, T., Piccoli, C. (2019). Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. Oxidative Medicine and Cellular Longevity, 2019, 1–14. https://doi.org/10.1155/2019/8201079
  87. Hossain, M., Das, S., Das, U., Doroudi, A., Zhu, J., Dimmock, J. R. (2020). Novel hybrid molecules of 3,5-bis(benzylidene)-4-piperidones and dichloroacetic acid which demonstrate potent tumour-selective cytotoxicity. Bioorganic & Medicinal Chemistry Letters, 30 (3), 126878. https://doi.org/10.1016/j.bmcl.2019.126878
  88. James, M. O., Yan, Z., Cornett, R., Jayanti, V. M., Henderson, G. N., Davydova, N. et al. (1998). Pharmacokinetics and metabolism of [14C]dichloroacetate in male Sprague-Dawley rats. Identification of glycine conjugates, including hippurate, as urinary metabolites of dichloroacetate. Drug metabolism and disposition: the biological fate of chemicals, 26 (11), 1134–1143.
  89. James, M. O., Jahn, S. C., Zhong, G., Smeltz, M. G., Hu, Z., Stacpoole, P. W. (2017). Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacology & Therapeutics, 170, 166–180. https://doi.org/10.1016/j.pharmthera.2016.10.018
  90. Dhar, S., Lippard, S. J. (2009). Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proceedings of the National Academy of Sciences, 106 (52), 22199–22204. https://doi.org/10.1073/pnas.0912276106
  91. Stacpoole, P. W., Harwood, H. J., Varnado, C. E. (1983). Regulation of rat liver hydroxymethylglutaryl coenzyme A reductase by a new class of noncompetitive inhibitors. Effects of dichloroacetate and related carboxylic acids on enzyme activity. Journal of Clinical Investigation, 72 (5), 1575–1585. https://doi.org/10.1172/jci111116
  92. Stacpoole, P. W., Gonzalez, M. G., Vlasak, J., Oshiro, Y., Bodor, N. (1987). Dichloroacetate derivatives. metabolic effects and pharmacodynamics in normal rats. Life Sciences, 41 (18), 2167–2176. https://doi.org/10.1016/0024-3205(87)90535-2
  93. Kasenov, K. Zh. (2012). Transdermalnye terapevticheskie sistemy – chreskozhnaia dostavka lekarstvennykh veshchestv (obzor). Klinicheskaia meditcina Kazakhstana, 1 (24), 110–115.
  94. Dhar, S., Pathak, R. (2018). Pat. No. US10004809B2. Precise delivery of therapeutic agents to cell mitochondria for anti-cancer therapy. University of Georgia Research Foundation Inc UGARF (USA); published: 26.06.2018.
  95. Soo, K. K., Jun, P. Y., Hyun-Nam, S., Woo, K. J. (2012). Pat. No. US2012295917A1. Imatinib dichloroacetate and anti-cancer agent comprising the same. Celltrion Chemical Res INST [KR]; published: 22.11.2012.
  96. Li, B. (2011). Pat. No. CN101984967A. Manganoporphyrin-dichloroacetic acid combined medicament for treating tumors. Shandong Hongli Lab Animal Experiment Co LTD (СN); published: 16.03.2011.
  97. Evangelos, M., Stephen, A. (2006). Pat. No. WO2006108276A1. A method of treating cancer using dichloroacetate. Published: 19.10.2006.
  98. Jianping, D., Quan, L. (2017). Pat. No. CN106986791A. Medicinal compound for treating tumors and preparation method and application thereof. Published: 28.07.2017.
  99. Soo-Youl, K., Jong-Heon, K., Young-Ki, B., Ho, L., Hyon-Chol, J., Beom-Kyu, C. et al. (2016). Pat. No. CN106232109A. Pharmaceutical composition for cancer treatment containing gossypol and phenformin as active ingredients. Published 14.12.2016.
  100. Boyd, M. R., Paull, K. D. (1995). Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research, 34 (2), 91–109. https://doi.org/10.1002/ddr.430340203
  101. Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L. et al. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research, 48 (3), 589–601.
  102. Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6 (10), 813–823. https://doi.org/10.1038/nrc1951
Dichloroacetic acid derivatives as potential anti-tumor and anti-inflammatory agents

Downloads

Published

2024-02-29

How to Cite

Havryshchuk, L., Horishny, V., Rushchak, N., & Lesyk, R. (2024). Dichloroacetic acid derivatives as potential anti-tumor and anti-inflammatory agents. ScienceRise: Pharmaceutical Science, (1(47), 60–78. https://doi.org/10.15587/2519-4852.2024.299229

Issue

Section

Pharmaceutical Science