[1,2,4]triazino[2,3-c]quinazoline hybrids with azole and azine heterocycles: design, synthesis, antibacterial and antiradical activity

Authors

DOI:

https://doi.org/10.15587/2519-4852.2024.318160

Keywords:

heterocyclic hybrids, synthesis, radical scavenging activity, antimicrobial and antifungal activity, SAR-analysis

Abstract

The aim: Present paper devoted to the purposeful search of a promising biologically active compounds among heterocyclic hybrids combining in their structure [1,2,4]triazino[2,3-c]quinazoline system and a "pharmacophoric" azole or azine fragment, joined through an alkylthio linker group.

Material and methods: Methods of synthetic organic chemistry were used to prepare target compounds. The purity and structure of the synthesized compounds were confirmed by elemental analysis, HPLC-MS, and ¹H NMR spectrometry. Radical-scavenging activity was estimated using DPPH-assay, antimicrobial activity was studied by serial dilution method.

Results: A combinatorial library of 30 novel heterocyclic hybrids was designed and synthesized. The target compounds were obtained via the interaction of 6-chloroalkyl-3-R-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones and corresponding heterocyclic thiones in the presence of a base. The synthesized compounds were studied for their radical scavenging and antimicrobial activity. Most of the obtained compounds revealed low antimicrobial activity against studied strains. However, the heterocyclic hybrid combining triazinoquinazoline, thiadiazole, and 4-fluorophenyl moieties (compound 2.14) inhibited the growth of S. aureus, E. coli, and M. luteum. Among the obtained compounds, five heterocyclic hybrids demonstrated significant DPPH radical scavenging activity (30.41-43.53 %). The "structure-activity" correlations were evaluated and discussed. It was estimated that "linker" alkylthio-group modification resulted in the most pronounced changes in the radical scavenging activity of obtained compounds.

Conclusions: Triazinoquinazoline-based heterocyclic hybrids are promising objects for further screening for antimicrobial activity and pharmacological effects associated with antiradical properties

Author Biographies

Oleksandr Grytsak, Zaporizhzhia State Medical and Pharmaceutical University

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Kostiantyn Schabelnyk, Zaporizhzhia State Medical and Pharmaceutical University

PhD, Associate Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Anna Kinichenko, Zaporizhzhia State Medical and Pharmaceutical University

PhD

Department of Pharmacology, Pharmacognosy and Botany

Olena Komarovska-Porokhnyvets, Lviv Polytechnic National University

PhD, Associate Professor

Institute of Chemistry and Chemical Technologies

Vira Lubenets, Lviv Polytechnic National University

Doctor of Chemical Sciences, Professor

Institute of Chemistry and Chemical Technologies

Oleksii Voskoboinik, National University "Zaporizhzhia Polytechnic"

Doctor of Pharmaceutical Sciences, Professor

Department of Composite Materials, Chemistry and Technologies

Serhii Kovalenko, Oles Honchar Dnipro National University

Doctor of Pharmaceutical Sciences, Professor

Research Institute of Chemistry and Geology

References

  1. Viegas-Junior, C., Danuello, A., Bolzani, V. S., Barreiro, E. J., Fraga, C. A. M. (2007). Molecular hybridization: a useful tool in the design of new drug prototypes. Current Medicinal Chemistry, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805
  2. Decker, M. (Ed.) (2017). Design of Hybrid Molecules for Drug Development. Elsevier, 352.
  3. Morais, T. S. (2024). Recent Advances in the Development of Hybrid Drugs. Pharmaceutics, 16 (7), 889. https://doi.org/10.3390/pharmaceutics16070889
  4. Ivasiv, V., Albertini, C., Gonçalves, A. E., Rossi, M., Bolognesi, M. L. (2019). Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Current Topics in Medicinal Chemistry, 19 (19), 1694–1711. https://doi.org/10.2174/1568026619666190619115735
  5. de Sena Murteira Pinheiro, P., Franco, L. S., Montagnoli, T. L., Fraga, C. A. M. (2024). Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opinion on Drug Discovery, 19 (4), 451–470. https://doi.org/10.1080/17460441.2024.2322990
  6. Alkhzem, A. H., Woodman, T. J., Blagbrough, I. S. (2022). Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Advances, 12 (30), 19470–19484. https://doi.org/10.1039/d2ra03281c
  7. Gontijo, V. S., Viegas, F. P. D., Ortiz, C. J. C., de Freitas Silva, M., Damasio, C. M., Rosa, M. C. et al. (2020). Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Current Neuropharmacology, 18 (5), 348–407. https://doi.org/10.2174/1385272823666191021124443
  8. Bosquesi, P. L., Melo, T. R. F., Vizioli, E. O., Santos, J. L. dos, Chung, M. C. (2011). Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach. Pharmaceuticals, 4 (11), 1450–1474. https://doi.org/10.3390/ph4111450
  9. Soltan, O. M., Shoman, M. E., Abdel-Aziz, S. A., Narumi, A., Konno, H., Abdel-Aziz, M. (2021). Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 225, 113768. https://doi.org/10.1016/j.ejmech.2021.113768
  10. Terreni, M., Taccani, M., Pregnolato, M. (2021). New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules, 26 (9), 2671. https://doi.org/10.3390/molecules26092671
  11. Millanao, A. R., Mora, A. Y., Villagra, N. A., Bucarey, S. A., Hidalgo, A. A. (2021). Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules, 26 (23), 7153. https://doi.org/10.3390/molecules26237153
  12. Piplani, P., Kumar, A., Kulshreshtha, A., Vohra, T., Piplani, V. (2024). Recent Development of DNA Gyrase Inhibitors: An Update. Mini-Reviews in Medicinal Chemistry, 24 (10), 1001–1030. https://doi.org/10.2174/0113895575264264230921080718
  13. Watkins, R. R., Thapaliya, D., Lemonovich, T. L., Bonomo, R. A. (2023). Gepotidacin: a novel, oral, ‘first-in-class’ triazaacenaphthylene antibiotic for the treatment of uncomplicated urinary tract infections and urogenital gonorrhoea. Journal of Antimicrobial Chemotherapy, 78 (5), 1137–1142. https://doi.org/10.1093/jac/dkad060
  14. Teixeira, M. M., Carvalho, D. T., Sousa, E., Pinto, E. (2022). New Antifungal Agents with Azole Moieties. Pharmaceuticals, 15 (11), 1427. https://doi.org/10.3390/ph15111427
  15. Amariucai-Mantu, D., Mangalagiu, V., Bejan, I., Aricu, A., Mangalagiu, I. I. (2022). Hybrid Azine Derivatives: A Useful Approach for Antimicrobial Therapy. Pharmaceutics, 14 (10), 2026. https://doi.org/10.3390/pharmaceutics14102026
  16. Mangalagiu, V., Danac, R., Diaconu, D., Zbancioc, G., Mangalagiu, I. I. (2024). Hybrids Diazine: Recent Advancements in Modern Antimicrobial Therapy. Current Medicinal Chemistry, 31 (19), 2687–2705. https://doi.org/10.2174/0929867330666230418104409
  17. Balaes, T., Marandis, C. G., Mangalagiu, V., Glod, M., Mangalagiu, I. I. (2024). New insides into chimeric and hybrid azines derivatives with antifungal activity. Future Medicinal Chemistry, 16 (11), 1163–1180. https://doi.org/10.1080/17568919.2024.2351288
  18. Rana, N., Grover, P., Singh, H. (2024). Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Current Topics in Medicinal Chemistry, 24 (6), 541–579. https://doi.org/10.2174/0115680266290152240110074034
  19. Berest, G. G., Nosulenko, I. S., Voskoboynik, O. Yu., Kovalenko, S. I.; Tabachnikov, S. (Ed.) (2021). Anti-tumor potencial of substituted 6-oxo(thioxo)-6,7-dihydro-2Н-[1,2,4]triazino[2,3-c]quinazolin-2-ones. Scientific research of the XXI century (Part 1). Los Angeles: GS publishing service, 295–311. https://doi.org/10.51587/9781-7364-13302-2021-001-295-311
  20. Berest, G. G., Voskoboynic, O. Yu., Kovalenko, S. I., Sinyak, R. S., Ornelchenko, I. V., Shishkin, O. V. et al. (2010). The efficient synthesis of 3-R-6-thio-6,7-dihydro-2H-[l,2,4]triazino[2,3-c]-quinazoline-2-ones and their derivatives, antimicrobial and antifungal activity. Journal of Organic and Pharmaceutical Chemistry, 8 (3 (31)), 42–51.
  21. Berest, G. G., Voskoboynik, O. Yu., Kovalenko, S. I., Nosulenko, I. S., Antypenko, L. M., Antypenko, O. M. et al. (2012). Synthesis of new 6-{[-(dialkylamino(heterocyclyl)alkyl]thio}-3-R-2H-[1,2,4]¬triazino[2,3-c]quinazoline-2-ones and evaluation of their anticancer and antimicrobial activities. Scientia Pharmaceutica, 80 (1), 37–65. https://doi.org/10.3797/scipharm.1111-15
  22. Nosulenko, I. S., Voskoboynik, O. Yu., Berest, G. G., Safronyuk, S. L., Kovalenko, S. I., Katsev, A. V. et al. (2014). Synthesis and antiviral activity of [(9-R1-10-R2-3-R-2-oxo-2H-[1,2,4]-triazino[2,3-c]quinazolin-6-yl)thio]acetamides derivatives with the fragments of carcass amines. Journal of Organic and Pharmaceutical Chemistry, 12 (1 (45)), 17–27. https://doi.org/10.24959/ophcj.14.783
  23. Kovalenko, S. I., Nosulenko, I. S., Voskoboynik, A. Yu., Berest, G. G., Antypenko, L. N., Antypenko, A. N., Katsev, A. M. (2012). N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecules. Synthesis, physico-chemical properties, cytotoxicity research by bioluminescence inhibition, anticancer activity. Scientia Pharmaceutica, 80, 837–865. https://doi.org/10.3797/scipharm.1208-07
  24. Nosulenko, I., Berest, G., Skoryna, D., Voskoboinik, O., Kovalenko, S. (2022). Synthesis and antimicrobial activity of [1,2,4]triazіno[2,3-c]quinazoline – pyrazoline hybrids. Journal of Research in Pharmacy, 26 (1), 1045–1051. https://doi.org/10.29228/jrp.100
  25. Sergeieva, T. Yu., Voskoboynik, O. Yu., Okovytyy, S. I., Kovalenko, S. I., Shishkina, S. V., Shishkin, O. V., Leszczynski, J. (2014). Hydrazinolysis of 3-R-[1,2,4]Triazino[2,3-c]quinazolin-2-ones. Synthetic and Theoretical Aspects. The Journal of Physical Chemistry A, 118 (10), 1895–1905. https://doi.org/10.1021/jp4052616
  26. Szabo, M., Idiţoiu, C., Chambre, D., Lupea, A. (2007). Improved DPPH determination for antioxidant activity spectrophotometric assay. Chemical Papers, 61 (3), 214–216. https://doi.org/10.2478/s11696-007-0022-7
  27. Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
  28. Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14 (2), 97–115. https://doi.org/10.1556/1886.2024.00035
  29. Voskoboynik, O. Yu. (2015). Synthesis, physicochemical properties and anticancer activity of 6-(heterocyclyl-N-ylmethyl)-3-R1-9-R2-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones. Pytannia khimii ta khimichnoi tekhnolohii, 1 (99), 7–12.
  30. Kotha, R. R., Tareq, F. S., Yildiz, E., Luthria, D. L. (2022). Oxidative Stress and Antioxidants – A Critical Review on In Vitro Antioxidant Assays. Antioxidants, 11 (12), 2388. https://doi.org/10.3390/antiox11122388
  31. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39 (1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
  32. Ulrich, K., Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035
  33. Abdulsamed, K., Gelen, V., Başer, Ö. F., Deveci, H. A., Karapehlivan, M. (2021). Thiols: Role in Oxidative Stress-Related Disorders. Accenting Lipid Peroxidation. IntechOpen. https://doi.org/10.5772/intechopen.96682
  34. WHO publishes list of bacteria for which new antibiotics are urgently needed (2017). World Health Organization. Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Last accessed: 10.12.2023
  35. Modh, R. P., De Clercq, E., Pannecouque, C., Chikhalia, K. H. (2013). Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline–triazine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 29 (1), 100–108. https://doi.org/10.3109/14756366.2012.755622
  36. Asadi, P., Khodarahmi, G., Jahanian‐Najafabadi, A., Saghaie, L., Hassanzadeh, F. (2017). Biologically Active Heterocyclic Hybrids Based on Quinazolinone, Benzofuran and Imidazolium Moieties: Synthesis, Characterization, Cytotoxic and Antibacterial Evaluation. Chemistry & Biodiversity, 14 (4). https://doi.org/10.1002/cbdv.201600411
[1,2,4]triazino[2,3-c]quinazoline hybrids with azole and azine heterocycles: design, synthesis, antibacterial and antiradical activity

Downloads

Published

2024-12-30

How to Cite

Grytsak, O., Schabelnyk, K., Kinichenko, A., Komarovska-Porokhnyvets, O., Lubenets, V., Voskoboinik, O., & Kovalenko, S. (2024). [1,2,4]triazino[2,3-c]quinazoline hybrids with azole and azine heterocycles: design, synthesis, antibacterial and antiradical activity. ScienceRise: Pharmaceutical Science, (6(52), 4–14. https://doi.org/10.15587/2519-4852.2024.318160

Issue

Section

Pharmaceutical Science