[1,2,4]триазино[2,3-c]хіназолінові гібриди з азольними та азиновими гетероциклами: дизайн, синтез, антибактеріальна та антирадикальна активність.
DOI:
https://doi.org/10.15587/2519-4852.2024.318160Ключові слова:
гетероциклічні гібриди, синтез, антирадикальна активність, антимікробна та протигрибкова активність, SAR-аналізАнотація
Мета: Представлена робота присвячена цілеспрямованому пошуку перспективних біологічно активних сполук серед гетероциклічних гібридів, що поєднують у своїй структурі систему [1,2,4]триазіно[2,3-c]хіназоліну та "фармакофорний" азольний або азиновий фрагмент, з'єднаний через алкілтіольну лінкерну групу.
Матеріали та методи: Для отримання цільових сполук використовували методи препаративної органічної хімії. Чистота та структура синтезованих речовин були підтверджені елементним аналізом, ВЕРХ-МС та 1Н ЯМР-спектрометрією. Антиоксидантну активність визначали на моделі зв’язування DPPH-радикалу, антимікробну активність вивчали методом серійних розведень.
Результати: Було розроблено та синтезовано комбінаторну бібліотеку з 30 нових гетероциклічних гібридів. Цільові сполуки отримані шляхом взаємодії 6-хлоралкіл-3-R-2H-[1,2,4]триазіно[2,3-c]хіназолін-2-онів з відповідними гетероциклічними тіонами у присутності основи. Синтезовані сполуки досліджено на антиоксидантну та антимікробну активність. Більшість отриманих речовин виявили низьку антимікробну активність проти досліджуваних штамів. Однак гетероциклічний гібрид, що поєднує триазинохіназоліновий, тіадіазольний і 4-фторфенільний залишки (сполука 2.14), інгібував ріст S. aureus, E. coli та M. luteum. Серед отриманих сполук п’ять гетероциклічних гібридів продемонстрували значну здатність до зв’язування DPPH-радикалів (30.41-43.53 %). Було оцінено та обговорено кореляції між їх структурою та активністю. Встановлено, що модифікація алкілтіольної лінкерної групи призвела до найбільш виражених змін у антирадикальній активності синтезованих сполук.
Висновки: Гетероциклічні гібриди на основі триазінохіназоліну є перспективними об’єктами для подальшого скринінгу антимікробної активності та фармакологічних ефектів, що пов’язані з антирадикальними властивостями
Посилання
- Viegas-Junior, C., Danuello, A., Bolzani, V. S., Barreiro, E. J., Fraga, C. A. M. (2007). Molecular hybridization: a useful tool in the design of new drug prototypes. Current Medicinal Chemistry, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805
- Decker, M. (Ed.) (2017). Design of Hybrid Molecules for Drug Development. Elsevier, 352.
- Morais, T. S. (2024). Recent Advances in the Development of Hybrid Drugs. Pharmaceutics, 16 (7), 889. https://doi.org/10.3390/pharmaceutics16070889
- Ivasiv, V., Albertini, C., Gonçalves, A. E., Rossi, M., Bolognesi, M. L. (2019). Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Current Topics in Medicinal Chemistry, 19 (19), 1694–1711. https://doi.org/10.2174/1568026619666190619115735
- de Sena Murteira Pinheiro, P., Franco, L. S., Montagnoli, T. L., Fraga, C. A. M. (2024). Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opinion on Drug Discovery, 19 (4), 451–470. https://doi.org/10.1080/17460441.2024.2322990
- Alkhzem, A. H., Woodman, T. J., Blagbrough, I. S. (2022). Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Advances, 12 (30), 19470–19484. https://doi.org/10.1039/d2ra03281c
- Gontijo, V. S., Viegas, F. P. D., Ortiz, C. J. C., de Freitas Silva, M., Damasio, C. M., Rosa, M. C. et al. (2020). Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Current Neuropharmacology, 18 (5), 348–407. https://doi.org/10.2174/1385272823666191021124443
- Bosquesi, P. L., Melo, T. R. F., Vizioli, E. O., Santos, J. L. dos, Chung, M. C. (2011). Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach. Pharmaceuticals, 4 (11), 1450–1474. https://doi.org/10.3390/ph4111450
- Soltan, O. M., Shoman, M. E., Abdel-Aziz, S. A., Narumi, A., Konno, H., Abdel-Aziz, M. (2021). Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 225, 113768. https://doi.org/10.1016/j.ejmech.2021.113768
- Terreni, M., Taccani, M., Pregnolato, M. (2021). New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules, 26 (9), 2671. https://doi.org/10.3390/molecules26092671
- Millanao, A. R., Mora, A. Y., Villagra, N. A., Bucarey, S. A., Hidalgo, A. A. (2021). Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules, 26 (23), 7153. https://doi.org/10.3390/molecules26237153
- Piplani, P., Kumar, A., Kulshreshtha, A., Vohra, T., Piplani, V. (2024). Recent Development of DNA Gyrase Inhibitors: An Update. Mini-Reviews in Medicinal Chemistry, 24 (10), 1001–1030. https://doi.org/10.2174/0113895575264264230921080718
- Watkins, R. R., Thapaliya, D., Lemonovich, T. L., Bonomo, R. A. (2023). Gepotidacin: a novel, oral, ‘first-in-class’ triazaacenaphthylene antibiotic for the treatment of uncomplicated urinary tract infections and urogenital gonorrhoea. Journal of Antimicrobial Chemotherapy, 78 (5), 1137–1142. https://doi.org/10.1093/jac/dkad060
- Teixeira, M. M., Carvalho, D. T., Sousa, E., Pinto, E. (2022). New Antifungal Agents with Azole Moieties. Pharmaceuticals, 15 (11), 1427. https://doi.org/10.3390/ph15111427
- Amariucai-Mantu, D., Mangalagiu, V., Bejan, I., Aricu, A., Mangalagiu, I. I. (2022). Hybrid Azine Derivatives: A Useful Approach for Antimicrobial Therapy. Pharmaceutics, 14 (10), 2026. https://doi.org/10.3390/pharmaceutics14102026
- Mangalagiu, V., Danac, R., Diaconu, D., Zbancioc, G., Mangalagiu, I. I. (2024). Hybrids Diazine: Recent Advancements in Modern Antimicrobial Therapy. Current Medicinal Chemistry, 31 (19), 2687–2705. https://doi.org/10.2174/0929867330666230418104409
- Balaes, T., Marandis, C. G., Mangalagiu, V., Glod, M., Mangalagiu, I. I. (2024). New insides into chimeric and hybrid azines derivatives with antifungal activity. Future Medicinal Chemistry, 16 (11), 1163–1180. https://doi.org/10.1080/17568919.2024.2351288
- Rana, N., Grover, P., Singh, H. (2024). Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Current Topics in Medicinal Chemistry, 24 (6), 541–579. https://doi.org/10.2174/0115680266290152240110074034
- Berest, G. G., Nosulenko, I. S., Voskoboynik, O. Yu., Kovalenko, S. I.; Tabachnikov, S. (Ed.) (2021). Anti-tumor potencial of substituted 6-oxo(thioxo)-6,7-dihydro-2Н-[1,2,4]triazino[2,3-c]quinazolin-2-ones. Scientific research of the XXI century (Part 1). Los Angeles: GS publishing service, 295–311. https://doi.org/10.51587/9781-7364-13302-2021-001-295-311
- Berest, G. G., Voskoboynic, O. Yu., Kovalenko, S. I., Sinyak, R. S., Ornelchenko, I. V., Shishkin, O. V. et al. (2010). The efficient synthesis of 3-R-6-thio-6,7-dihydro-2H-[l,2,4]triazino[2,3-c]-quinazoline-2-ones and their derivatives, antimicrobial and antifungal activity. Journal of Organic and Pharmaceutical Chemistry, 8 (3 (31)), 42–51.
- Berest, G. G., Voskoboynik, O. Yu., Kovalenko, S. I., Nosulenko, I. S., Antypenko, L. M., Antypenko, O. M. et al. (2012). Synthesis of new 6-{[-(dialkylamino(heterocyclyl)alkyl]thio}-3-R-2H-[1,2,4]¬triazino[2,3-c]quinazoline-2-ones and evaluation of their anticancer and antimicrobial activities. Scientia Pharmaceutica, 80 (1), 37–65. https://doi.org/10.3797/scipharm.1111-15
- Nosulenko, I. S., Voskoboynik, O. Yu., Berest, G. G., Safronyuk, S. L., Kovalenko, S. I., Katsev, A. V. et al. (2014). Synthesis and antiviral activity of [(9-R1-10-R2-3-R-2-oxo-2H-[1,2,4]-triazino[2,3-c]quinazolin-6-yl)thio]acetamides derivatives with the fragments of carcass amines. Journal of Organic and Pharmaceutical Chemistry, 12 (1 (45)), 17–27. https://doi.org/10.24959/ophcj.14.783
- Kovalenko, S. I., Nosulenko, I. S., Voskoboynik, A. Yu., Berest, G. G., Antypenko, L. N., Antypenko, A. N., Katsev, A. M. (2012). N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecules. Synthesis, physico-chemical properties, cytotoxicity research by bioluminescence inhibition, anticancer activity. Scientia Pharmaceutica, 80, 837–865. https://doi.org/10.3797/scipharm.1208-07
- Nosulenko, I., Berest, G., Skoryna, D., Voskoboinik, O., Kovalenko, S. (2022). Synthesis and antimicrobial activity of [1,2,4]triazіno[2,3-c]quinazoline – pyrazoline hybrids. Journal of Research in Pharmacy, 26 (1), 1045–1051. https://doi.org/10.29228/jrp.100
- Sergeieva, T. Yu., Voskoboynik, O. Yu., Okovytyy, S. I., Kovalenko, S. I., Shishkina, S. V., Shishkin, O. V., Leszczynski, J. (2014). Hydrazinolysis of 3-R-[1,2,4]Triazino[2,3-c]quinazolin-2-ones. Synthetic and Theoretical Aspects. The Journal of Physical Chemistry A, 118 (10), 1895–1905. https://doi.org/10.1021/jp4052616
- Szabo, M., Idiţoiu, C., Chambre, D., Lupea, A. (2007). Improved DPPH determination for antioxidant activity spectrophotometric assay. Chemical Papers, 61 (3), 214–216. https://doi.org/10.2478/s11696-007-0022-7
- Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
- Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14 (2), 97–115. https://doi.org/10.1556/1886.2024.00035
- Voskoboynik, O. Yu. (2015). Synthesis, physicochemical properties and anticancer activity of 6-(heterocyclyl-N-ylmethyl)-3-R1-9-R2-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones. Pytannia khimii ta khimichnoi tekhnolohii, 1 (99), 7–12.
- Kotha, R. R., Tareq, F. S., Yildiz, E., Luthria, D. L. (2022). Oxidative Stress and Antioxidants – A Critical Review on In Vitro Antioxidant Assays. Antioxidants, 11 (12), 2388. https://doi.org/10.3390/antiox11122388
- Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39 (1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
- Ulrich, K., Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035
- Abdulsamed, K., Gelen, V., Başer, Ö. F., Deveci, H. A., Karapehlivan, M. (2021). Thiols: Role in Oxidative Stress-Related Disorders. Accenting Lipid Peroxidation. IntechOpen. https://doi.org/10.5772/intechopen.96682
- WHO publishes list of bacteria for which new antibiotics are urgently needed (2017). World Health Organization. Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Last accessed: 10.12.2023
- Modh, R. P., De Clercq, E., Pannecouque, C., Chikhalia, K. H. (2013). Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline–triazine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 29 (1), 100–108. https://doi.org/10.3109/14756366.2012.755622
- Asadi, P., Khodarahmi, G., Jahanian‐Najafabadi, A., Saghaie, L., Hassanzadeh, F. (2017). Biologically Active Heterocyclic Hybrids Based on Quinazolinone, Benzofuran and Imidazolium Moieties: Synthesis, Characterization, Cytotoxic and Antibacterial Evaluation. Chemistry & Biodiversity, 14 (4). https://doi.org/10.1002/cbdv.201600411
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Oleksandr Grytsak, Kostiantyn Schabelnyk, Anna Kinichenko, Olena Komarovska-Porokhnyvets, Vira Lubеnets, Oleksii Voskoboinik, Serhii Kovalenko

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Наше видання використовує положення про авторські права Creative Commons CC BY для журналів відкритого доступу.




