Pharmacological evaluation and potential epigenetic modulation of a zinc-cysteine complex for type 2 diabetes therapy

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.338156

Keywords:

Type 2 Diabetes, zinc-cysteine complex, AGEs, DNA methylation, molecular docking

Abstract

Type 2 Diabetes (T2D) is a complex metabolic disorder that involves more than just glucose imbalance. Protein glycation, and epigenetic dysregulation—particularly aberrant DNA methylation—play critical roles in the onset and progression of the disease. However, current therapies remain limited in directly targeting these underlying molecular mechanisms.

The aim. This study investigated a zinc-monocysteine complex (ZMC) as a potential multi-target therapeutic candidate for T2D, exploring its novel application in modulating protein glycation and DNA methylation events.

Materials and methods. The structural integrity of ZMC was confirmed through NMR, FT-IR, UV-visible, CHN analysis, and powder XRD techniques. In vitro assays compared ZMC and unbound L-cysteine (CYS) for their abilities to inhibit advanced glycation end-products (AGEs) and preserved protein secondary structure under glycation stress, using BSA-glucose and methylglyoxal (MGO) model systems. To support potential epigenetic modulation, molecular docking studies were conducted to evaluate the interaction of ZMC with DNA methyltransferase, DNMT1. Live-cell imaging was performed on C2C12 and HEK293T cells to assess changes in methylation-associated signals following ZMC treatment.

Results. ZMC was defined structurally as a 1:1 amorphous cyclic salt. It outperformed CYS in inhibiting AGE formation at 5 mM (BSA-glucose) and 1 mM (BSA-MGO). It also better preserved protein secondary structure at 5 mM (BSA-glucose) and 10 mM (BSA-MGO). Although docking suggested limited affinity for DNA methyltransferase (DNMT1: -5.1 kcal/mol) , live-cell imaging indicated reduced methylation-associated signals in especially in C2C12 cells following treatment.

Conclusion. Together, ZMC demonstrates multi-target potential in addressing key metabolic and epigenetic factors involved in T2D. Its protective effects are primarily attributed to metabolic regulation. These findings support the continued development of ZMC as a promising scaffold for future T2D therapeutics

Supporting Agency

  • This research was conducted with funding from Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP). The primary author is also a recipient of the DOST-ASTHRDP Research Enrichment “Sandwich” Program which allowed him to perform experiments in Niigata University, Japan as a visiting researcher.

Author Biographies

Godzelle Ogoc Bulahan, Mindanao State University – Iligan Institute of Technology

Master of Science in Chemistry

Department of Chemistry

Orlie B. Basalo, Mindanao State University – Iligan Institute of Technology

Master of Science in Chemistry

Department of Chemistry

Hajime Iwamoto, Niigata University

PhD in Chemistry

Department of Chemistry

Aaron L. Degamon, Mindanao State University – Iligan Institute of Technology

Master of Science in Chemistry

Department of Chemistry

James V. Lavilla Jr., Mindanao State University – Iligan Institute of Technology

Master of Science in Chemistry

Department of Chemistry

Richemae Grace R. Lebosada, Mindanao State University – Iligan Institute of Technology

PhD in Chemistry

Department of Chemistry

Charlie A. Lavilla Jr., Mindanao State University – Iligan Institute of Technology

PhD in Biomedical Science

Department of Chemistry

References

  1. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B. et al. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  2. Five questions on the IDF Diabetes Atlas (2013). Diabetes Research and Clinical Practice, 102 (2), 147–148. https://doi.org/10.1016/j.diabres.2013.10.013
  3. Zhou, B., Rayner, A. W., Gregg, E. W., Sheffer, K. E., Carrillo-Larco, R. M., Bennett, J. E. et al. (2024). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. The Lancet, 404 (10467), 2077–2093. https://doi.org/10.1016/s0140-6736(24)02317-1
  4. Cando, L. F. T., Quebral, E. P. B., Ong, E. P., Catral, C. D. M., Relador, R. J. L., Velasco, A. J. D. et al. (2024). Current status of diabetes mellitus care and management in the Philippines. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 18 (2), 102951. https://doi.org/10.1016/j.dsx.2024.102951
  5. Jiang, J., Zhao, C., Han, T., Shan, H., Cui, G., Li, S., Xie, Z., Wang, J. (2022). Advanced Glycation End Products, Bone Health, and Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 130 (10), 671–677. https://doi.org/10.1055/a-1861-2388
  6. Uceda, A. B., Mariño, L., Casasnovas, R., Adrover, M. (2024). An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophysical Reviews, 16 (2), 189–218. https://doi.org/10.1007/s12551-024-01188-4
  7. Ishrat, N., Khan, H., Patel, O. P. S., Mahdi, A. A., Mujeeb, F., Ahmad, S. (2021). Role of Glycation in Type 2 Diabetes Mellitus and Its Prevention through Nymphaea Species. BioMed Research International, 2021 (1). https://doi.org/10.1155/2021/7240046
  8. Kim, M. (2019). DNA methylation: a cause and consequence of type 2 diabetes. Genomics & Informatics, 17 (4), e38. https://doi.org/10.5808/gi.2019.17.4.e38
  9. Rönn, T., Ling, C. (2015). DNA Methylation as a Diagnostic and Therapeutic Target in the Battle Against Type 2 Diabetes. Epigenomics, 7 (3), 451–460. https://doi.org/10.2217/epi.15.7
  10. Kaimala, S., Ansari, S. A., Emerald, B. S. (2023). DNA methylation in the pathogenesis of type 2 diabetes. Hormones and Epigenetics. Elsevier Inc., 147–169. https://doi.org/10.1016/bs.vh.2022.11.002
  11. Chong, K., Chang, J. K., Chuang, L. (2024). Recent advances in the treatment of type 2 diabetes mellitus using new drug therapies. The Kaohsiung Journal of Medical Sciences, 40 (3), 212–220. https://doi.org/10.1002/kjm2.12800
  12. Maanvizhi, S., Boppana, T., Krishnan, C., Arumugam, G. (2014). Metal complexes in the management of diabetes mellitus: A new therapeutic strategy. International Journal of Pharmacy and Pharmaceutical Science, 6, 40–44. Available at: https://journals.innovareacademics.in/index.php/ijpps/article/view/1778/10461
  13. Matsukura, T., Tanaka, H. (2000). Applicability of Zinc Complex of L-Carnosine for Medical Use. Biochemistry, 65 (7), 817–823. Available at: https://pubmed.ncbi.nlm.nih.gov/10951100/
  14. Tate, D. J., Newsome, D. A. (2006). A Novel Zinc Compound (Zinc Monocysteine) Enhances the Antioxidant Capacity of Human Retinal Pigment Epithelial Cells. Current Eye Research, 31 (7-8), 675–683. https://doi.org/10.1080/02713680600801024
  15. Tate, D. J., Newsome, D. A. (2007). Preparation of a Zinc Monocysteine Compound. Synthetic Communications, 37 (6), 909–914. https://doi.org/10.1080/00397910601163612
  16. Miroliaei, M., Khazaei, S., Moshkelgosha, S., Shirvani, M. (2011). Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food Chemistry, 129 (2), 267–271. https://doi.org/10.1016/j.foodchem.2011.04.039
  17. Ni, M., Song, X., Pan, J., Gong, D., Zhang, G. (2021). Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site. Journal of Agricultural and Food Chemistry, 69 (8), 2462–2476. https://doi.org/10.1021/acs.jafc.0c08052
  18. Hori, Y., Otomura, N., Nishida, A., Nishiura, M., Umeno, M., Suetake, I., Kikuchi, K. (2018). Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation. Journal of the American Chemical Society, 140 (5), 1686–1690. https://doi.org/10.1021/jacs.7b09713
  19. Brabha, M. J., Malbi, M. A. (2023). Synthesis, characterization and biological activity of zinc complexes of ethylenediamine and its derivatives. Chemical Physics Impact, 7, 100248. https://doi.org/10.1016/j.chphi.2023.100248
  20. Campos, A. F. C., Reis, P. F., Neiva, J. V. C. M., Guerra, A. A. A. M., Kern, C., Silva, M. F. P. da et al. (2021). Reusable cysteine-ferrite-based magnetic nanopowders for removal of lead ions from water. Materials Research, 24 (5). https://doi.org/10.1590/1980-5373-mr-2021-0217
  21. Soomro, R. A., Nafady, A., Sirajuddin, Memon, N., Sherazi, T. H., Kalwar, N. H. (2014). l-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta, 130, 415–422. https://doi.org/10.1016/j.talanta.2014.07.023
  22. Stark, F., Loderer, C., Petchey, M., Grogan, G., Ansorge‐Schumacher, M. B. (2022). Advanced Insights into Catalytic and Structural Features of the Zinc‐Dependent Alcohol Dehydrogenase from Thauera aromatica. ChemBioChem, 23 (15). https://doi.org/10.1002/cbic.202200149
  23. Khan, M. M., Kalathil, S., Lee, J.-T., Cho, M.-H. (2012). Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin of the Korean Chemical Society, 33(8), 2592–2596. https://doi.org/10.5012/bkcs.2012.33.8.2592
  24. Kieninger, M., Ventura, O. N. (2009). On the structure, infrared and Raman spectra of the 2:1 cysteine–Zn complex. Theoretical Chemistry Accounts, 125 (3-6), 279–291. https://doi.org/10.1007/s00214-009-0697-7
  25. Guo, T., Xu, J., Fan, Z., Du, Y., Pan, Y., Xiao, H. et al. (2019). Preparation and characterization of cysteine‐formaldehyde cross‐linked complex for CO2 capture. The Canadian Journal of Chemical Engineering, 97 (12), 3012–3024. https://doi.org/10.1002/cjce.23595
  26. Zerner, M. C., Loew, G. H., Kirchner, R. F., Mueller-Westerhoff, U. T. (1980). An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. Journal of the American Chemical Society, 102 (2), 589–599. https://doi.org/10.1021/ja00522a025
  27. Han, J. (2010). Vibrational and Electronic Spectroscopic Characterizations of Amino Acid-Metal Complexes. Journal of the Korean Society for Applied Biological Chemistry, 53 (6), 821–825. https://doi.org/10.3839/jksabc.2010.124
  28. Tripathi, I. P., Dwivedi, A., Mishra, M. K. (2019). Synthesis and Characterization of Some Zn (II) Complexes of L-Glutamic Acid and L-Aspartic Acid. International Journal of Advanced Scientific Research and Management, 5, 153–159. Available at: https://ijasrm.com/wp-content/uploads/2019/05/IJASRM_V4S4_1317_153_159.pdf
  29. Trampuž, M., Žnidarič, M., Gallou, F., Časar, Z. (2022). Does the Red Shift in UV–Vis Spectra Really Provide a Sensing Option for Detection of N-Nitrosamines Using Metalloporphyrins? ACS Omega, 8 (1), 1154–1167. https://doi.org/10.1021/acsomega.2c06615
  30. Timón, V., Maté, B., Herrero, V. J., Tanarro, I. (2021). Infrared spectra of amorphous and crystalline urea ices. Physical Chemistry Chemical Physics, 23 (39), 22344–22351. https://doi.org/10.1039/d1cp03503g
  31. Kheshtzar, R., Berenjian, A., Taghizadeh, S.-M., Ghasemi, Y., Asad, A. G., Ebrahiminezhad, A. (2019). Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles. Green Processing and Synthesis, 8 (1), 846–855. https://doi.org/10.1515/gps-2019-0055
  32. Nazir, S., Anwar, J., Munawar, M. A., Best, S. P., Cheah, M. (2016). Transition Metal Complexes of S-Propyl- L -Cysteine. Journal of The Chemical Society of Pakistan, 38, 415–423. Available at: https://jcsp.org.pk/PublishedVersion/67f48146-16cf-4d24-bfe5-a74da9c85acfManuscript%20no%2006,%20Final%20Gally%20Proof%20of%2010829%20_Shahbaz%20Na.pdf
  33. Yang, Y., Engkvist, O., Llinàs, A., Chen, H. (2012). Beyond Size, Ionization State, and Lipophilicity: Influence of Molecular Topology on Absorption, Distribution, Metabolism, Excretion, and Toxicity for Druglike Compounds. Journal of Medicinal Chemistry, 55 (8), 3667–3677. https://doi.org/10.1021/jm201548z
  34. Lavilla, M. L., Lavilla, C. J. A., Burnea, F. K. B., Inutan, E. D. (2024). L-cysteine sequestering methyl glyoxal prevents protein glycation: a combined in vitro and in silico evaluation. Current Issues in Pharmacy and Medical Sciences, 37 (2), 114–120. https://doi.org/10.2478/cipms-2024-0019
  35. Tarwadi, K. V., Agte, V. V., Kelkar, A. R. (2018). Influence of Selected Micronutrients on Glycation of Human Lens Proteins: Implications in Diabetic Cataract. Acta Scientific Ophthalmology, 1 (2), 4–10. Available at: https://actascientific.com/ASOP/pdf/ASOP-01-0009.pdf
  36. Leyder, T., Mignon, J., Mottet, D., Michaux, C. (2022). Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. International Journal of Molecular Sciences, 23 (23), 15291. https://doi.org/10.3390/ijms232315291
  37. Tupe, R., Kulkarni, A., Adeshara, K., Sankhe, N., Shaikh, S., Dalal, S. et al. (2015). Zinc inhibits glycation induced structural, functional modifications in albumin and protects erythrocytes from glycated albumin toxicity. International Journal of Biological Macromolecules, 79, 601–610. https://doi.org/10.1016/j.ijbiomac.2015.05.028
  38. Moulahoum, H., Ghorbanizamani, F., Timur, S., Zihnioglu, F. (2020). Zinc enhances carnosine inhibitory effect against structural and functional age-related protein alterations in an albumin glycoxidation model. BioMetals, 33 (6), 353–364. https://doi.org/10.1007/s10534-020-00254-0
  39. Pace, N., Weerapana, E. (2014). Zinc-Binding Cysteines: Diverse Functions and Structural Motifs. Biomolecules, 4 (2), 419–434. https://doi.org/10.3390/biom4020419
  40. Holendova, B., Plecita-Hlavata, L. (2023). Cysteine residues in signal transduction and its relevance in pancreatic beta cells. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1221520
  41. Raciti, G. A., Desiderio, A., Longo, M., Leone, A., Zatterale, F., Prevenzano, I. et al. (2021). DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? International Journal of Molecular Sciences, 22 (21), 11652. https://doi.org/10.3390/ijms222111652
  42. Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M. et al. (2017). Zinc-finger proteins in health and disease. Cell Death Discovery, 3 (1). https://doi.org/10.1038/cddiscovery.2017.71
  43. Noronha, N. Y., Barato, M., Sae-Lee, C., Pinhel, M. A. de S., Watanabe, L. M., Pereira, V. A. B. et al. (2022). Novel Zinc-Related Differentially Methylated Regions in Leukocytes of Women With and Without Obesity. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.785281
  44. Zhang, H.-H., Han, X., Wang, M., Hu, Q., Li, S., Wang, M., Hu, J. (2019). The Association between Genomic DNA Methylation and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2019, 1–9. https://doi.org/10.1155/2019/2494057
  45. Wang, X., Yang, W., Zhu, Y., Zhang, S., Jiang, M., Hu, J., Zhang, H.-H. (2022). Genomic DNA Methylation in Diabetic Chronic Complications in Patients With Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.896511
  46. Hafez, S. M., Abou-Youssef, Hazem. E.-S., Awad, M. A.-K., Kamel, S. A., Youssef, R. N., Elshiekh, S. M. et al. (2021). Insulin-like growth factor binding protein 1 DNA methylation in type 2 diabetes. Egyptian Journal of Medical Human Genetics, 22 (1). https://doi.org/10.1186/s43042-021-00153-0
  47. Willmer, T., Johnson, R., Louw, J., Pheiffer, C. (2018). Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Frontiers in Endocrinology, 9. https://doi.org/10.3389/fendo.2018.00744
  48. Cheng, Y., Gadd, D. A., Gieger, C., Monterrubio-Gómez, K., Zhang, Y., Berta, I. et al. (2023). Development and validation of DNA methylation scores in two European cohorts augment 10-year risk prediction of type 2 diabetes. Nature Aging, 3 (4), 450–458. https://doi.org/10.1038/s43587-023-00391-4
  49. Ahmed, N. (2005). Advanced glycation endproducts – role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67 (1), 3–21. https://doi.org/10.1016/j.diabres.2004.09.004
  50. Bulahan, G., Lavilla, C. (2025). Zinc-Cysteine Coupling Demonstrates Potent In Vitro Antioxidant Activity and Preserves Cell Viability Under Glucolipotoxicity-Induced Oxidative Stress. International Journal of Scientific Engineering and Science, 9 (5), 182–185. Available at: https://ijses.com/wp-content/uploads/2025/05/78-IJSES-V9N5.pdf
Pharmacological evaluation and potential epigenetic modulation of a zinc-cysteine complex for type 2 diabetes therapy

Downloads

Published

2025-08-30

How to Cite

Bulahan, G. O., Basalo, O. B., Iwamoto, H., Degamon, A. L., Lavilla Jr., J. V., Lebosada, R. G. R., & Lavilla Jr., C. A. (2025). Pharmacological evaluation and potential epigenetic modulation of a zinc-cysteine complex for type 2 diabetes therapy. ScienceRise: Pharmaceutical Science, (4 (56), 65–77. https://doi.org/10.15587/2519-4852.2025.338156

Issue

Section

Pharmaceutical Science