Синтез, структурна характеристика та протипухлинна активність нових похідних хромено[4′,3′:4,5]тіопірано[2,3-d]тіазолу

Автор(и)

  • Михайло Володимирович Гойдик Львівський національний медичний університет імені Данила Галицького, Україна https://orcid.org/0009-0008-0019-1501
  • Андрій Ігорович Кархут Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0003-2386-1973
  • Святослав Володимирович Половкович Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0002-7143-6931
  • Роман Богданович Лесик Львівський національний медичний університет імені Данила Галицького, Україна https://orcid.org/0000-0002-3322-0080

DOI:

https://doi.org/10.15587/2519-4852.2025.341796

Ключові слова:

протипухлинна активність, тіопірано[2,3-d]тіазоли, конденсація Кновенагеля, реакція гетеро-Дільса–Альдера, доміно-реакція

Анотація

Розробка гетероциклічних сполук із вираженою біологічною активністю залишається пріоритетним напрямом сучасної медичної хімії. Використання каскадних доміно-реакцій, таких як конденсація Кновенагеля у поєднанні з гетероциклізацією за механізмом гетеро-Дільса-Альдера, забезпечує ефективне створення складних структур з потенційною протипухлинною активністю.

Мета дослідження. Синтез серії похідних тіопірано[2,3-d]тіазолу шляхом каскадної реакції Кновенагеля-гетеро-Дільса-Альдера з подальшим N3-алкілуванням та оцінка їх протипухлинної активності in vitro у панелі клітин людини NCI-60.

Матеріали та методи. Структурну ідентифікацію синтезованих сполук проводили методом ЯМР-спектроскопії в розчиннику DMSO-d₆ з тетраметилсиланом (TMS) як внутрішнім стандартом, а також методом LC-MS із використанням мас-селективного детектора типу APCI. Біологічну активність досліджували в рамках скринінгової програми NCI-60, яка охоплює панель із 60 людських пухлинних клітин різного походження. Оцінювали такі параметри, як інгібування росту клітин (GI₅₀), летальна концентрація (LC₅₀) та рівень цитотоксичності в мікромолярному діапазоні концентрацій.

Результати. Серія похідних тіопірано[2,3-d]тіазолу була синтезована шляхом двоетапної доміно-реакції конденсації Кновенагеля та внутрішньомолекулярної гетероциклізації за механізмом гетеро-Дільса–Альдера між 4-тіоксо-2-оксо-тіазолідиноном і O-алкільованими похідними саліцилового альдегіду з алільними або пропаргіловими замісниками. Подальше N3-алкілування дало змогу отримати сполуки 3.1 (60,0 %), 3.2 (67,0 %) та 4 (58,0 %). Введення піперидинового фрагмента дозволило синтезувати водорозчинну метансульфонатну сіль 5 з виходом 70,0 %. Реакція з 2,5-(2-пропінілокси)бензальдегідом призвела до in situ ароматизації та утворення стабільної структури - сполуки 8. Чотири синтезовані сполуки були протестовані на протипухлинну активність. Найвищу ефективність продемонструвала сполука 8, яка спричинила повну загибель клітин OVCAR-4 (рак яйників, LC₅₀ = 29,5 мкМ), а також істотно інгібувала ріст клітин SR (лейкемія, GI₅₀ = 0,676 мкМ), 786-0 (рак нирок, 0,696 мкМ), A498 (рак нирок 0,528 мкМ) та BT-549 (рак молочної залози, 0,666 мкМ).

Висновки. Запропонована синтетична методика дозволяє ефективно отримувати структурно різноманітні похідні тіопірано[2,3-d]тіазолу з високими виходами. N3-алкілування та введення піперидинового фрагмента забезпечили можливість синтезу водорозчинної метансульфонатної солі 5. Серед протестованих сполук найбільш перспективною виявилася сполука 8, яка продемонструвала виражену цитотоксичність та селективність до ряду пухлинних клітин. Отримані результати свідчать про доцільність подальших доклінічних досліджень цієї структури як потенційного кандидата для розробки нових протипухлинних препаратів

Спонсор дослідження

  • Research project "Search for novel potential anticonvulsant agents for the treatment of post-traumatic epilepsy in military personnel and the civilian population", funded by the Ministry of Education and Science of Ukraine (Project registration number: 0125U001794)

Біографії авторів

Михайло Володимирович Гойдик, Львівський національний медичний університет імені Данила Галицького

Аспірант

Кафедра фармацевтичної, органічної та біоорганічної хімії

Андрій Ігорович Кархут, Національний університет «Львівська політехніка»

Кандидат хімічних наук, доцент

Кафедра технології біологічно активних речовин, фармації та біотехнології

Святослав Володимирович Половкович, Національний університет «Львівська політехніка»

Доктор хімічних наук, професор

Кафедра технології біологічно активних речовин, фармації та біотехнології

Роман Богданович Лесик, Львівський національний медичний університет імені Данила Галицького

Доктор фармацевтичних наук, професор

Кафедра фармацевтичної, органічної та біоорганічної хімії

Посилання

  1. Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L. et al. (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available at: https://gco.iarc.who.int/today Last accessed: 05.08.2025
  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71 (3), 209–249. https://doi.org/10.3322/caac.21660
  3. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149 (4), 778–789. https://doi.org/10.1002/ijc.33588
  4. Malvezzi, M., Santucci, C., Boffetta, P., Collatuzzo, G., Levi, F., La Vecchia, C., Negri, E. (2023). European cancer mortality predictions for the year 2023 with focus on lung cancer. Annals of Oncology, 34 (4), 410–419. https://doi.org/10.1016/j.annonc.2023.01.010
  5. Exploring the different types of cancer and treatment options (2023). Cancer Research Institute. Available at: https://www.cancerresearch.org/blog/exploring-the-different-types-of-cancer-and-treatment-options Last accessed: 05.08.2025
  6. Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M. et al. (2018). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer, 103, 356–387. https://doi.org/10.1016/j.ejca.2018.07.005
  7. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M. et al. (2018). Cancer today (powered by GLOBOCAN 2018): IARC CancerBase No. 15. Lyon: International Agency for Research on Cancer.
  8. Fidler, M. M., Gupta, S., Soerjomataram, I., Ferlay, J., Steliarova-Foucher, E., Bray, F. (2017). Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. The Lancet Oncology, 18 (12), 1579–1589. https://doi.org/10.1016/s1470-2045(17)30677-0
  9. Erdmann, F., Lortet‐Tieulent, J., Schüz, J., Zeeb, H., Greinert, R., Breitbart, E. W., Bray, F. (2012). International trends in the incidence of malignant melanoma 1953–2008 – are recent generations at higher or lower risk? International Journal of Cancer, 132 (2), 385–400. https://doi.org/10.1002/ijc.27616
  10. Whiteman, D. C., Green, A. C., Olsen, C. M. (2016). The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. Journal of Investigative Dermatology, 136 (6), 1161–1171. https://doi.org/10.1016/j.jid.2016.01.035
  11. Arnold, M., Singh, D., Laversanne, M., Vignat, J., Vaccarella, S., Meheus, F. et al. (2022). Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology, 158 (5), 495–503. https://doi.org/10.1001/jamadermatol.2022.0160
  12. Prasad, S. M., Shishkov, D., Mihaylov, N. V., Khuskivadze, A., Genov, P., Terzi, V. et al. (2025). Primary Chemoablation of Recurrent Low-Grade Intermediate-Risk Nonmuscle-Invasive Bladder Cancer With UGN-102: A Single-Arm, Open-Label, Phase 3 Trial (ENVISION). Journal of Urology, 213 (2), 205–216. https://doi.org/10.1097/ju.0000000000004296
  13. Williams, P. A., Zaidi, S. K., Sengupta, R. (2023). AACR Cancer Progress Report 2023: Advancing the Frontiers of Cancer Science and Medicine. Clinical Cancer Research, 29 (19), 3850–3851. https://doi.org/10.1158/1078-0432.ccr-23-2591
  14. Petrou, A., Fesatidou, M., Geronikaki, A. (2021). Thiazole Ring – A Biologically Active Scaffold. Molecules, 26 (11), 3166. https://doi.org/10.3390/molecules26113166
  15. Lesyk, R., Zimenkovsky, B. (2004). 4-Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry. Current Organic Chemistry, 8 (16), 1547–1577. https://doi.org/10.2174/1385272043369773
  16. Verma, A., Saraf, S. K. (2008). 4-Thiazolidinone – A biologically active scaffold. European Journal of Medicinal Chemistry, 43 (5), 897–905. https://doi.org/10.1016/j.ejmech.2007.07.017
  17. Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havryluk, D. Ya., Atamanyuk, D. V. et al. (2011). Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolymers and Cell, 27 (2), 107–117. https://doi.org/10.7124/bc.000089
  18. Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A., Saraf, S. K. (2014). 4-Thiazolidinones: The advances continue…. European Journal of Medicinal Chemistry, 72, 52–77. https://doi.org/10.1016/j.ejmech.2013.11.017
  19. Reginato, M. J., Bailey, S. T., Krakow, S. L., Minami, C., Ishii, S., Tanaka, H., Lazar, M. A. (1998). A Potent Antidiabetic Thiazolidinedione with Unique Peroxisome Proliferator-activated Receptor γ-activating Properties. Journal of Biological Chemistry, 273 (49), 32679–32684. https://doi.org/10.1074/jbc.273.49.32679
  20. Kador, P. F., Kinoshita, J. H., Sharpless, N. E. (1985). Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. Journal of Medicinal Chemistry, 28 (7), 841–849. https://doi.org/10.1021/jm00145a001
  21. Charlier, C., Michaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. European Journal of Medicinal Chemistry, 38 (7-8), 645–659. https://doi.org/10.1016/s0223-5234(03)00115-6
  22. Palla, R., Distratis, C., Cominotto, R., Panichi, V., Pozzetti, G., Bionda, A. et al. (1987). Renal Effests of Etozolin in Man. Diuretics: Basic, Pharmacological, and Clinical Aspects. Boston: Springer, 553–555. https://doi.org/10.1007/978-1-4613-2067-8_142
  23. Löscher, W., von Hodenberg, A., Nolting, B., Fassbender, C. ‐P., Taylor, C. (1991). Ralitoline: A Reevaluation of Anticonvulsant Profile and Determination of “Active” Plasma Concentrations in Comparison with Prototype Antiepileptic Drugs in Mice. Epilepsia, 32 (4), 560–568. https://doi.org/10.1111/j.1528-1157.1991.tb04693.x
  24. Aldrich, C., Bertozzi, C., Georg, G. I., Kiessling, L., Lindsley, C., Liotta, D. et al. (2017). The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 60 (6), 2165–2168. https://doi.org/10.1021/acs.jmedchem.7b00229
  25. Kaminskyy, D., Kryshchyshyn, A., Lesyk, R. (2017). Recent developments with rhodanine as a scaffold for drug discovery. Expert Opinion on Drug Discovery, 12 (12), 1233–1252. https://doi.org/10.1080/17460441.2017.1388370
  26. Kaminskyy, D., Kryshchyshyn, A., Lesyk, R. (2017). 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. European Journal of Medicinal Chemistry, 140, 542–594. https://doi.org/10.1016/j.ejmech.2017.09.031
  27. Baell, J. B., Holloway, G. A. (2010). New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. Journal of Medicinal Chemistry, 53 (7), 2719–2740. https://doi.org/10.1021/jm901137j
  28. Baell, J. B. (2016). Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). Journal of Natural Products, 79 (3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  29. Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kieć-Kononowicz, K., Gzella, A. (2006). Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorganic & Medicinal Chemistry, 14 (15), 5230–5240. https://doi.org/10.1016/j.bmc.2006.03.053
  30. Atamanyuk, D., Zimenkovsky, B., Lesyk, R. (2008). Synthesis and anticancer activity of novel thiopyrano[2,3-d]thiazole-based compounds containing norbornane moiety. Journal of Sulfur Chemistry, 29 (2), 151–162. https://doi.org/10.1080/17415990801911723
  31. Atamanyuk, D., Zimenkovsky, B., Atamanyuk, V., Nektegayev, I., Lesyk, R. (2013). Synthesis and Biological Activity of New Thiopyrano[2,3-d]thiazoles Containing a Naphthoquinone Moiety. Scientia Pharmaceutica, 81 (2), 423–436. https://doi.org/10.3797/scipharm.1301-13
  32. Kryshchyshyn, A., Roman, O., Lozynskyi, A., Lesyk, R. (2018). Thiopyrano[2,3-d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Scientia Pharmaceutica, 86 (2), 26. https://doi.org/10.3390/scipharm86020026
  33. Bar, M., Skóra, B., Tabęcka-Łonczyńska, A., Holota, S., Khyluk, D., Roman, O. et al. (2022). New 4-thiazolidinone-based molecules Les-2769 and Les-3266 as possible PPARγ modulators. Bioorganic Chemistry, 128, 106075. https://doi.org/10.1016/j.bioorg.2022.106075
  34. Kozak, Y., Finiuk, N., Czarnomysy, R., Gornowicz, A., Pinyazhko, R., Lozynskyi, A. et al. (2025). Juglone-Bearing Thiopyrano[2,3-d]thiazoles Induce Apoptosis in Colorectal Adenocarcinoma Cells. Cells, 14 (6), 465. https://doi.org/10.3390/cells14060465
  35. Ivasechko, I., Lozynskyi, A., Senkiv, J., Roszczenko, P., Kozak, Y., Finiuk, N. et al. (2023). Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). European Journal of Medicinal Chemistry, 252, 115304. https://doi.org/10.1016/j.ejmech.2023.115304
  36. Lozynskyi, A., Senkiv, J., Ivasechko, I., Finiuk, N., Klyuchivska, O., Kashchak, N. et al. (2022). 1,4-Naphthoquinone Motif in the Synthesis of New Thiopyrano[2,3-d]thiazoles as Potential Biologically Active Compounds. Molecules, 27 (21), 7575. https://doi.org/10.3390/molecules27217575
  37. Kryshchyshyn-Dylevych, A., Garazd, M., Karkhut, A., Polovkovych, S., Lesyk, R. (2020). Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)-1H-indole-carboxylic acids derivatives. Synthetic Communications, 50 (18), 2830–2838. https://doi.org/10.1080/00397911.2020.1786124
  38. Polovkovych, S. V., Karkhut, A. I., Marintsova, N. G., Lesyk, R. B., Zimenkovsky, B. S., Novikov, V. P. (2013). Synthesis of New Schiff Bases and Polycyclic Fused Thiopyranothiazoles Containing 4,6-Dichloro-1,3,5-Triazine Moiety. Journal of Heterocyclic Chemistry, 50 (6), 1419–1424. https://doi.org/10.1002/jhet.890
  39. Kryshchyshyn, A., Atamanyuk, D., Lesyk, R. (2012). Fused Thiopyrano[2,3-d]thiazole Derivatives as Potential Anticancer Agents. Scientia Pharmaceutica, 80 (3), 509–529. https://doi.org/10.3797/scipharm.1204-02
  40. Finiuk, N., Zelisko, N., Klyuchivska, O., Yushyn, I., Lozynskyi, A., Cherniienko, A. et al. (2022). Thiopyrano[2,3-d]thiazole structures as promising scaffold with anticancer potential. Chemico-Biological Interactions, 368, 110246. https://doi.org/10.1016/j.cbi.2022.110246
  41. Lozynskyi, A., Zimenkovsky, B., Nektegayev, I., Lesyk, R. (2015). Arylidene pyruvic acids motif in the synthesis of new thiopyrano[2,3-d]thiazoles as potential biologically active compounds. Heterocyclic Communications, 21 (1), 55–59. https://doi.org/10.1515/hc-2014-0204
  42. Davydov, E., Hoidyk, M., Shtrygol’, S., Karkhut, A., Polovkovych, S., Klyuchivska, O. et al. (2024). Evaluation of thiopyrano[2,3‐d]thiazole derivatives as potential anticonvulsant agents. Archiv Der Pharmazie, 357 (10). https://doi.org/10.1002/ardp.202400357
  43. Mishchenko, M., Shtrygol’, S., Lozynskyi, A., Khomyak, S., Novikov, V., Karpenko, O. et al. (2021). Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Scientia Pharmaceutica, 89 (2), 22. https://doi.org/10.3390/scipharm89020022
  44. Mishchenko, M., Shtrygol, S., Kaminskyy, D., Lesyk, R. (2020). Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents. Scientia Pharmaceutica, 88 (1), 16. https://doi.org/10.3390/scipharm88010016
  45. Holota, S., Kryshchyshyn, A., Derkach, H., Trufin, Y., Demchuk, I., Gzella, A. et al. (2019). Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorganic Chemistry, 86, 126–136. https://doi.org/10.1016/j.bioorg.2019.01.045
  46. Kryshchyshyn, A., Kaminskyy, D., Karpenko, O., Gzella, A., Grellier, P., Lesyk, R. (2019). Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents. European Journal of Medicinal Chemistry, 174, 292–308. https://doi.org/10.1016/j.ejmech.2019.04.052
  47. Kryshchyshyn, A., Kaminskyy, D., Nektegayev, I., Grellier, P., Lesyk, R. (2018). Isothiochromenothiazoles—A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Scientia Pharmaceutica, 86 (4), 47. https://doi.org/10.3390/scipharm86040047
  48. Kryshchyshyn, A., Devinyak, O., Kaminskyy, D., Grellier, P., Lesyk, R. (2017). Development of Predictive QSAR Models of 4‐Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms. Molecular Informatics, 37 (5). https://doi.org/10.1002/minf.201700078
  49. Kryshchyshyn, A. P., Atamanyuk, D. V., Kaminskyy, D. V., Grellier, Ph., Lesyk, R. B. (2017). Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. Biopolymers and Cell, 33 (3), 183–205. https://doi.org/10.7124/bc.00094f
  50. Zelisko, N., Atamanyuk, D., Vasylenko, O., Grellier, P., Lesyk, R. (2012). Synthesis and antitrypanosomal activity of new 6,6,7-trisubstituted thiopyrano[2,3-d][1,3]thiazoles. Bioorganic & Medicinal Chemistry Letters, 22 (23), 7071–7074. https://doi.org/10.1016/j.bmcl.2012.09.091
  51. Lozynskyi, A., Zasidko, V., Atamanyuk, D., Kaminskyy, D., Derkach, H., Karpenko, O. et al. (2017). Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Molecular Diversity, 21 (2), 427–436. https://doi.org/10.1007/s11030-017-9737-8
  52. Khamitova, А., Berillo, D., Lozynskyi, A., Konechnyi, Y., Mural, D., Georgiyants, V., Lesyk, R. (2024). Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini-Reviews in Medicinal Chemistry, 24 (5), 531–545. https://doi.org/10.2174/1389557523666230713115947
  53. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D. et al. (1991). Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. JNCI Journal of the National Cancer Institute, 83 (11), 757–766. https://doi.org/10.1093/jnci/83.11.757
  54. Boyd, M. R., Paull, K. D. (1995). Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research, 34 (2), 91–109. https://doi.org/10.1002/ddr.430340203
  55. Boyd, M. R. (1997). The NCI in vitro anticancer drug discovery screen. Anticancer Drug Development Guide. Totowa, NJ Humana Press Teicher BA, 23 (42), 10-1007.
  56. Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6 (10), 813–823. https://doi.org/10.1038/nrc1951
  57. Rostom, S. A. F. (2006). Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorganic & Medicinal Chemistry, 14 (19), 6475–6485. https://doi.org/10.1016/j.bmc.2006.06.020
  58. Grygorenko, O. O., Radchenko, D. S., Dziuba, I., Chuprina, A., Gubina, K. E., Moroz, Y. S. (2020). Generating Multibillion Chemical Space of Readily Accessible Screening Compounds. IScience, 23 (11), 101681. https://doi.org/10.1016/j.isci.2020.101681
  59. Perebyinis, M., Rognan, D. (2022). Overlap of On‐demand Ultra‐large Combinatorial Spaces with On‐the‐shelf Drug‐like Libraries. Molecular Informatics, 42 (1). https://doi.org/10.1002/minf.202200163
  60. Wang, M., Li, S., Wang, J., Zhang, O., Du, H., Jiang, D. et al. (2024). ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning. Nature Communications, 15 (1). https://doi.org/10.1038/s41467-024-54456-y
  61. Hayashi, Y. (2020). Time Economy in Total Synthesis. The Journal of Organic Chemistry, 86 (1), 1–23. https://doi.org/10.1021/acs.joc.0c01581
  62. Savych, O., Kuchkovska, Y. O., Bogolyubsky, A. V., Konovets, A. I., Gubina, K. E., Pipko, S. E. et al. (2019). One-Pot Parallel Synthesis of 5-(Dialkylamino)tetrazoles. ACS Combinatorial Science, 21 (9), 635–642. https://doi.org/10.1021/acscombsci.9b00120
  63. Graebin, C. S., Ribeiro, F. V., Rogério, K. R., Kümmerle, A. E. (2019). Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Current Organic Synthesis, 16 (6), 855–899. https://doi.org/10.2174/1570179416666190718153703
  64. Lozynskyi, A., Karkhut, A., Polovkovych, S., Karpenko, O., Holota, S., Gzella, A. K., Lesyk, R. (2022). 3-Phenylpropanal and citral in the multicomponent synthesis of novel thiopyrano[2,3-d]thiazoles. Results in Chemistry, 4, 100464. https://doi.org/10.1016/j.rechem.2022.100464
  65. Ismaili, L., do Carmo Carreiras, M. (2018). Multicomponent Reactions for Multitargeted Compounds for Alzheimer`s Disease. Current Topics in Medicinal Chemistry, 17 (31), 3319–3327. https://doi.org/10.2174/1568026618666180112155424
  66. Radchenko, D. S., Naumchyk, V. S., Dziuba, I., Kyrylchuk, A. A., Gubina, K. E., Moroz, Y. S., Grygorenko, O. O. (2021). One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles. Molecular Diversity, 26 (2), 993–1004. https://doi.org/10.1007/s11030-021-10218-2
  67. Hajizadeh, F., Mojtahedi, M. M., Abaee, M. S. (2023). One-pot four-component synthesis of novel isothiourea-ethylene-tethered-piperazine derivatives. RSC Advances, 13 (46), 32772–32777. https://doi.org/10.1039/d3ra06678a
  68. Lozynskyi, A., Zimenkovsky, B., Karkhut, A., Polovkovych, S., Gzella, A. K., Lesyk, R. (2016). Application of the 2(5 H )furanone motif in the synthesis of new thiopyrano[2,3- d ]thiazoles via the hetero-Diels–Alder reaction and related tandem processes. Tetrahedron Letters, 57 (30), 3318–3321. https://doi.org/10.1016/j.tetlet.2016.06.060
  69. Rapelli, C., Sridhar, B., Subba Reddy, B. V. (2020). Tandem Prins cyclization for the synthesis of indole fused spiro-1,4-diazocane scaffolds. Organic & Biomolecular Chemistry, 18 (34), 6710–6715. https://doi.org/10.1039/d0ob01384f
  70. Kumar, Y., Ila, H. (2022). Domino Synthesis of Thiazolo-Fused Six- and Seven-Membered Nitrogen Heterocycles via Intramolecular Heteroannulation of In-Situ-Generated 2-(Het)aryl-4-amino-5-functionalized Thiazoles. The Journal of Organic Chemistry, 87 (18), 12397–12413. https://doi.org/10.1021/acs.joc.2c01673
  71. Fan, L., Zhu, X., Liu, X., He, F., Yang, G., Xu, C., Yang, X. (2023). Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules, 28 (4), 1647. https://doi.org/10.3390/molecules28041647
Синтез, структурна характеристика та протипухлинна активність нових похідних хромено[4′,3′:4,5]тіопірано[2,3-d]тіазолу

##submission.downloads##

Опубліковано

2025-10-31

Як цитувати

Гойдик, М. В., Кархут, А. І., Половкович, С. В., & Лесик, Р. Б. (2025). Синтез, структурна характеристика та протипухлинна активність нових похідних хромено[4′,3′:4,5]тіопірано[2,3-d]тіазолу. ScienceRise: Pharmaceutical Science, (5 (57), 37–49. https://doi.org/10.15587/2519-4852.2025.341796

Номер

Розділ

Фармацевтичні науки