Synthesis, structural characterization and antitumor activity of new chromeno[4′,3′:4,5]thiopyrano[2,3-d]thiazole derivatives
DOI:
https://doi.org/10.15587/2519-4852.2025.341796Keywords:
anticancer activity, thiopyrano[2,3-d]thiazoles, Knoevenagel condensation, hetero-Diels–Alder reaction, domino reactionAbstract
The development of heterocyclic compounds with significant biological activity remains a priority in modern medicinal chemistry. The use of cascade domino reactions, such as Knoevenagel condensation combined with hetero-Diels-Alder cyclization, enables the efficient construction of complex structures with potential anticancer properties.
The aim of the study. To synthesize a series of thiopyrano[2,3-d]thiazole derivatives via a cascade Knoevenagel–hetero-Diels–Alder reaction followed by N3-alkylation and evaluate their in vitro antitumor activity in the NCI-60 human cancer cell line panel.
Materials and methods. Structural identification of the compounds was carried out using NMR spectroscopy in DMSO-d₆ with tetramethylsilane (TMS) as the internal standard, and LC-MS analysis with an APCI mass-selective detector. Biological activity was assessed using the NCI-60 screening program, which includes a panel of 60 human cancer cell lines of various origins. Key parameters such as growth inhibition (GI₅₀), lethal concentration (LC₅₀), and cytotoxicity at micromolar concentrations were determined.
Results. A series of thiopyrano[2,3-d]thiazole derivatives were synthesized through a two-step domino Knoevenagel condensation and intramolecular hetero-Diels–Alder cyclization between 4-thioxo-2-oxothiazolidinone and O-alkylated salicylaldehyde derivatives bearing allylic or propargyl substituents. Subsequent N3-alkylation yielded compounds 3.1 (60.0%), 3.2 (67.0%), and 4 (58.0%). Introduction of a piperidine moiety enabled the synthesis of water-soluble methanesulfonate salt 5 (70.0%). Reaction with 2,5-(2-propynyloxy)benzaldehyde led to in situ aromatization and the formation of a stable compound 8. Four compounds were tested for anticancer activity. Compound 8 showed the highest efficacy, causing complete cell death in OVCAR-4 (Ovarian Cancer, LC₅₀ = 29.5 μM) and strong growth inhibition in SR (Leukemia, GI₅₀ = 0.676 μM), 786-0 (Renal Cancer, GI₅₀ = 0.696 μM), A498 (Renal Cancer, GI₅₀ = 0.528 μM), and BT-549 (Breast Cancer, GI₅₀ = 0.666 μM) cells.
Conclusions. The proposed synthetic methodology enables efficient preparation of structurally diverse thiopyrano[2,3-d]thiazole derivatives in high yields. N3-alkylation and incorporation of a piperidine fragment allowed for the synthesis of a water-soluble methanesulfonate salt 5. Among the tested compounds, compound 8 exhibited the most promising cytotoxicity and selectivity towards several cancer cell lines, suggesting its potential as a lead compound for further preclinical development of novel anticancer agents
Supporting Agency
- Research project "Search for novel potential anticonvulsant agents for the treatment of post-traumatic epilepsy in military personnel and the civilian population", funded by the Ministry of Education and Science of Ukraine (Project registration number: 0125U001794)
References
- Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L. et al. (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available at: https://gco.iarc.who.int/today Last accessed: 05.08.2025
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71 (3), 209–249. https://doi.org/10.3322/caac.21660
- Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149 (4), 778–789. https://doi.org/10.1002/ijc.33588
- Malvezzi, M., Santucci, C., Boffetta, P., Collatuzzo, G., Levi, F., La Vecchia, C., Negri, E. (2023). European cancer mortality predictions for the year 2023 with focus on lung cancer. Annals of Oncology, 34 (4), 410–419. https://doi.org/10.1016/j.annonc.2023.01.010
- Exploring the different types of cancer and treatment options (2023). Cancer Research Institute. Available at: https://www.cancerresearch.org/blog/exploring-the-different-types-of-cancer-and-treatment-options Last accessed: 05.08.2025
- Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M. et al. (2018). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer, 103, 356–387. https://doi.org/10.1016/j.ejca.2018.07.005
- Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M. et al. (2018). Cancer today (powered by GLOBOCAN 2018): IARC CancerBase No. 15. Lyon: International Agency for Research on Cancer.
- Fidler, M. M., Gupta, S., Soerjomataram, I., Ferlay, J., Steliarova-Foucher, E., Bray, F. (2017). Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. The Lancet Oncology, 18 (12), 1579–1589. https://doi.org/10.1016/s1470-2045(17)30677-0
- Erdmann, F., Lortet‐Tieulent, J., Schüz, J., Zeeb, H., Greinert, R., Breitbart, E. W., Bray, F. (2012). International trends in the incidence of malignant melanoma 1953–2008 – are recent generations at higher or lower risk? International Journal of Cancer, 132 (2), 385–400. https://doi.org/10.1002/ijc.27616
- Whiteman, D. C., Green, A. C., Olsen, C. M. (2016). The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. Journal of Investigative Dermatology, 136 (6), 1161–1171. https://doi.org/10.1016/j.jid.2016.01.035
- Arnold, M., Singh, D., Laversanne, M., Vignat, J., Vaccarella, S., Meheus, F. et al. (2022). Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology, 158 (5), 495–503. https://doi.org/10.1001/jamadermatol.2022.0160
- Prasad, S. M., Shishkov, D., Mihaylov, N. V., Khuskivadze, A., Genov, P., Terzi, V. et al. (2025). Primary Chemoablation of Recurrent Low-Grade Intermediate-Risk Nonmuscle-Invasive Bladder Cancer With UGN-102: A Single-Arm, Open-Label, Phase 3 Trial (ENVISION). Journal of Urology, 213 (2), 205–216. https://doi.org/10.1097/ju.0000000000004296
- Williams, P. A., Zaidi, S. K., Sengupta, R. (2023). AACR Cancer Progress Report 2023: Advancing the Frontiers of Cancer Science and Medicine. Clinical Cancer Research, 29 (19), 3850–3851. https://doi.org/10.1158/1078-0432.ccr-23-2591
- Petrou, A., Fesatidou, M., Geronikaki, A. (2021). Thiazole Ring – A Biologically Active Scaffold. Molecules, 26 (11), 3166. https://doi.org/10.3390/molecules26113166
- Lesyk, R., Zimenkovsky, B. (2004). 4-Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry. Current Organic Chemistry, 8 (16), 1547–1577. https://doi.org/10.2174/1385272043369773
- Verma, A., Saraf, S. K. (2008). 4-Thiazolidinone – A biologically active scaffold. European Journal of Medicinal Chemistry, 43 (5), 897–905. https://doi.org/10.1016/j.ejmech.2007.07.017
- Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havryluk, D. Ya., Atamanyuk, D. V. et al. (2011). Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolymers and Cell, 27 (2), 107–117. https://doi.org/10.7124/bc.000089
- Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A., Saraf, S. K. (2014). 4-Thiazolidinones: The advances continue…. European Journal of Medicinal Chemistry, 72, 52–77. https://doi.org/10.1016/j.ejmech.2013.11.017
- Reginato, M. J., Bailey, S. T., Krakow, S. L., Minami, C., Ishii, S., Tanaka, H., Lazar, M. A. (1998). A Potent Antidiabetic Thiazolidinedione with Unique Peroxisome Proliferator-activated Receptor γ-activating Properties. Journal of Biological Chemistry, 273 (49), 32679–32684. https://doi.org/10.1074/jbc.273.49.32679
- Kador, P. F., Kinoshita, J. H., Sharpless, N. E. (1985). Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. Journal of Medicinal Chemistry, 28 (7), 841–849. https://doi.org/10.1021/jm00145a001
- Charlier, C., Michaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. European Journal of Medicinal Chemistry, 38 (7-8), 645–659. https://doi.org/10.1016/s0223-5234(03)00115-6
- Palla, R., Distratis, C., Cominotto, R., Panichi, V., Pozzetti, G., Bionda, A. et al. (1987). Renal Effests of Etozolin in Man. Diuretics: Basic, Pharmacological, and Clinical Aspects. Boston: Springer, 553–555. https://doi.org/10.1007/978-1-4613-2067-8_142
- Löscher, W., von Hodenberg, A., Nolting, B., Fassbender, C. ‐P., Taylor, C. (1991). Ralitoline: A Reevaluation of Anticonvulsant Profile and Determination of “Active” Plasma Concentrations in Comparison with Prototype Antiepileptic Drugs in Mice. Epilepsia, 32 (4), 560–568. https://doi.org/10.1111/j.1528-1157.1991.tb04693.x
- Aldrich, C., Bertozzi, C., Georg, G. I., Kiessling, L., Lindsley, C., Liotta, D. et al. (2017). The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 60 (6), 2165–2168. https://doi.org/10.1021/acs.jmedchem.7b00229
- Kaminskyy, D., Kryshchyshyn, A., Lesyk, R. (2017). Recent developments with rhodanine as a scaffold for drug discovery. Expert Opinion on Drug Discovery, 12 (12), 1233–1252. https://doi.org/10.1080/17460441.2017.1388370
- Kaminskyy, D., Kryshchyshyn, A., Lesyk, R. (2017). 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. European Journal of Medicinal Chemistry, 140, 542–594. https://doi.org/10.1016/j.ejmech.2017.09.031
- Baell, J. B., Holloway, G. A. (2010). New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. Journal of Medicinal Chemistry, 53 (7), 2719–2740. https://doi.org/10.1021/jm901137j
- Baell, J. B. (2016). Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). Journal of Natural Products, 79 (3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
- Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kieć-Kononowicz, K., Gzella, A. (2006). Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorganic & Medicinal Chemistry, 14 (15), 5230–5240. https://doi.org/10.1016/j.bmc.2006.03.053
- Atamanyuk, D., Zimenkovsky, B., Lesyk, R. (2008). Synthesis and anticancer activity of novel thiopyrano[2,3-d]thiazole-based compounds containing norbornane moiety. Journal of Sulfur Chemistry, 29 (2), 151–162. https://doi.org/10.1080/17415990801911723
- Atamanyuk, D., Zimenkovsky, B., Atamanyuk, V., Nektegayev, I., Lesyk, R. (2013). Synthesis and Biological Activity of New Thiopyrano[2,3-d]thiazoles Containing a Naphthoquinone Moiety. Scientia Pharmaceutica, 81 (2), 423–436. https://doi.org/10.3797/scipharm.1301-13
- Kryshchyshyn, A., Roman, O., Lozynskyi, A., Lesyk, R. (2018). Thiopyrano[2,3-d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Scientia Pharmaceutica, 86 (2), 26. https://doi.org/10.3390/scipharm86020026
- Bar, M., Skóra, B., Tabęcka-Łonczyńska, A., Holota, S., Khyluk, D., Roman, O. et al. (2022). New 4-thiazolidinone-based molecules Les-2769 and Les-3266 as possible PPARγ modulators. Bioorganic Chemistry, 128, 106075. https://doi.org/10.1016/j.bioorg.2022.106075
- Kozak, Y., Finiuk, N., Czarnomysy, R., Gornowicz, A., Pinyazhko, R., Lozynskyi, A. et al. (2025). Juglone-Bearing Thiopyrano[2,3-d]thiazoles Induce Apoptosis in Colorectal Adenocarcinoma Cells. Cells, 14 (6), 465. https://doi.org/10.3390/cells14060465
- Ivasechko, I., Lozynskyi, A., Senkiv, J., Roszczenko, P., Kozak, Y., Finiuk, N. et al. (2023). Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). European Journal of Medicinal Chemistry, 252, 115304. https://doi.org/10.1016/j.ejmech.2023.115304
- Lozynskyi, A., Senkiv, J., Ivasechko, I., Finiuk, N., Klyuchivska, O., Kashchak, N. et al. (2022). 1,4-Naphthoquinone Motif in the Synthesis of New Thiopyrano[2,3-d]thiazoles as Potential Biologically Active Compounds. Molecules, 27 (21), 7575. https://doi.org/10.3390/molecules27217575
- Kryshchyshyn-Dylevych, A., Garazd, M., Karkhut, A., Polovkovych, S., Lesyk, R. (2020). Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)-1H-indole-carboxylic acids derivatives. Synthetic Communications, 50 (18), 2830–2838. https://doi.org/10.1080/00397911.2020.1786124
- Polovkovych, S. V., Karkhut, A. I., Marintsova, N. G., Lesyk, R. B., Zimenkovsky, B. S., Novikov, V. P. (2013). Synthesis of New Schiff Bases and Polycyclic Fused Thiopyranothiazoles Containing 4,6-Dichloro-1,3,5-Triazine Moiety. Journal of Heterocyclic Chemistry, 50 (6), 1419–1424. https://doi.org/10.1002/jhet.890
- Kryshchyshyn, A., Atamanyuk, D., Lesyk, R. (2012). Fused Thiopyrano[2,3-d]thiazole Derivatives as Potential Anticancer Agents. Scientia Pharmaceutica, 80 (3), 509–529. https://doi.org/10.3797/scipharm.1204-02
- Finiuk, N., Zelisko, N., Klyuchivska, O., Yushyn, I., Lozynskyi, A., Cherniienko, A. et al. (2022). Thiopyrano[2,3-d]thiazole structures as promising scaffold with anticancer potential. Chemico-Biological Interactions, 368, 110246. https://doi.org/10.1016/j.cbi.2022.110246
- Lozynskyi, A., Zimenkovsky, B., Nektegayev, I., Lesyk, R. (2015). Arylidene pyruvic acids motif in the synthesis of new thiopyrano[2,3-d]thiazoles as potential biologically active compounds. Heterocyclic Communications, 21 (1), 55–59. https://doi.org/10.1515/hc-2014-0204
- Davydov, E., Hoidyk, M., Shtrygol’, S., Karkhut, A., Polovkovych, S., Klyuchivska, O. et al. (2024). Evaluation of thiopyrano[2,3‐d]thiazole derivatives as potential anticonvulsant agents. Archiv Der Pharmazie, 357 (10). https://doi.org/10.1002/ardp.202400357
- Mishchenko, M., Shtrygol’, S., Lozynskyi, A., Khomyak, S., Novikov, V., Karpenko, O. et al. (2021). Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Scientia Pharmaceutica, 89 (2), 22. https://doi.org/10.3390/scipharm89020022
- Mishchenko, M., Shtrygol, S., Kaminskyy, D., Lesyk, R. (2020). Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents. Scientia Pharmaceutica, 88 (1), 16. https://doi.org/10.3390/scipharm88010016
- Holota, S., Kryshchyshyn, A., Derkach, H., Trufin, Y., Demchuk, I., Gzella, A. et al. (2019). Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorganic Chemistry, 86, 126–136. https://doi.org/10.1016/j.bioorg.2019.01.045
- Kryshchyshyn, A., Kaminskyy, D., Karpenko, O., Gzella, A., Grellier, P., Lesyk, R. (2019). Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents. European Journal of Medicinal Chemistry, 174, 292–308. https://doi.org/10.1016/j.ejmech.2019.04.052
- Kryshchyshyn, A., Kaminskyy, D., Nektegayev, I., Grellier, P., Lesyk, R. (2018). Isothiochromenothiazoles—A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Scientia Pharmaceutica, 86 (4), 47. https://doi.org/10.3390/scipharm86040047
- Kryshchyshyn, A., Devinyak, O., Kaminskyy, D., Grellier, P., Lesyk, R. (2017). Development of Predictive QSAR Models of 4‐Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms. Molecular Informatics, 37 (5). https://doi.org/10.1002/minf.201700078
- Kryshchyshyn, A. P., Atamanyuk, D. V., Kaminskyy, D. V., Grellier, Ph., Lesyk, R. B. (2017). Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. Biopolymers and Cell, 33 (3), 183–205. https://doi.org/10.7124/bc.00094f
- Zelisko, N., Atamanyuk, D., Vasylenko, O., Grellier, P., Lesyk, R. (2012). Synthesis and antitrypanosomal activity of new 6,6,7-trisubstituted thiopyrano[2,3-d][1,3]thiazoles. Bioorganic & Medicinal Chemistry Letters, 22 (23), 7071–7074. https://doi.org/10.1016/j.bmcl.2012.09.091
- Lozynskyi, A., Zasidko, V., Atamanyuk, D., Kaminskyy, D., Derkach, H., Karpenko, O. et al. (2017). Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Molecular Diversity, 21 (2), 427–436. https://doi.org/10.1007/s11030-017-9737-8
- Khamitova, А., Berillo, D., Lozynskyi, A., Konechnyi, Y., Mural, D., Georgiyants, V., Lesyk, R. (2024). Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini-Reviews in Medicinal Chemistry, 24 (5), 531–545. https://doi.org/10.2174/1389557523666230713115947
- Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D. et al. (1991). Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. JNCI Journal of the National Cancer Institute, 83 (11), 757–766. https://doi.org/10.1093/jnci/83.11.757
- Boyd, M. R., Paull, K. D. (1995). Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research, 34 (2), 91–109. https://doi.org/10.1002/ddr.430340203
- Boyd, M. R. (1997). The NCI in vitro anticancer drug discovery screen. Anticancer Drug Development Guide. Totowa, NJ Humana Press Teicher BA, 23 (42), 10-1007.
- Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6 (10), 813–823. https://doi.org/10.1038/nrc1951
- Rostom, S. A. F. (2006). Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorganic & Medicinal Chemistry, 14 (19), 6475–6485. https://doi.org/10.1016/j.bmc.2006.06.020
- Grygorenko, O. O., Radchenko, D. S., Dziuba, I., Chuprina, A., Gubina, K. E., Moroz, Y. S. (2020). Generating Multibillion Chemical Space of Readily Accessible Screening Compounds. IScience, 23 (11), 101681. https://doi.org/10.1016/j.isci.2020.101681
- Perebyinis, M., Rognan, D. (2022). Overlap of On‐demand Ultra‐large Combinatorial Spaces with On‐the‐shelf Drug‐like Libraries. Molecular Informatics, 42 (1). https://doi.org/10.1002/minf.202200163
- Wang, M., Li, S., Wang, J., Zhang, O., Du, H., Jiang, D. et al. (2024). ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning. Nature Communications, 15 (1). https://doi.org/10.1038/s41467-024-54456-y
- Hayashi, Y. (2020). Time Economy in Total Synthesis. The Journal of Organic Chemistry, 86 (1), 1–23. https://doi.org/10.1021/acs.joc.0c01581
- Savych, O., Kuchkovska, Y. O., Bogolyubsky, A. V., Konovets, A. I., Gubina, K. E., Pipko, S. E. et al. (2019). One-Pot Parallel Synthesis of 5-(Dialkylamino)tetrazoles. ACS Combinatorial Science, 21 (9), 635–642. https://doi.org/10.1021/acscombsci.9b00120
- Graebin, C. S., Ribeiro, F. V., Rogério, K. R., Kümmerle, A. E. (2019). Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Current Organic Synthesis, 16 (6), 855–899. https://doi.org/10.2174/1570179416666190718153703
- Lozynskyi, A., Karkhut, A., Polovkovych, S., Karpenko, O., Holota, S., Gzella, A. K., Lesyk, R. (2022). 3-Phenylpropanal and citral in the multicomponent synthesis of novel thiopyrano[2,3-d]thiazoles. Results in Chemistry, 4, 100464. https://doi.org/10.1016/j.rechem.2022.100464
- Ismaili, L., do Carmo Carreiras, M. (2018). Multicomponent Reactions for Multitargeted Compounds for Alzheimer`s Disease. Current Topics in Medicinal Chemistry, 17 (31), 3319–3327. https://doi.org/10.2174/1568026618666180112155424
- Radchenko, D. S., Naumchyk, V. S., Dziuba, I., Kyrylchuk, A. A., Gubina, K. E., Moroz, Y. S., Grygorenko, O. O. (2021). One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles. Molecular Diversity, 26 (2), 993–1004. https://doi.org/10.1007/s11030-021-10218-2
- Hajizadeh, F., Mojtahedi, M. M., Abaee, M. S. (2023). One-pot four-component synthesis of novel isothiourea-ethylene-tethered-piperazine derivatives. RSC Advances, 13 (46), 32772–32777. https://doi.org/10.1039/d3ra06678a
- Lozynskyi, A., Zimenkovsky, B., Karkhut, A., Polovkovych, S., Gzella, A. K., Lesyk, R. (2016). Application of the 2(5 H )furanone motif in the synthesis of new thiopyrano[2,3- d ]thiazoles via the hetero-Diels–Alder reaction and related tandem processes. Tetrahedron Letters, 57 (30), 3318–3321. https://doi.org/10.1016/j.tetlet.2016.06.060
- Rapelli, C., Sridhar, B., Subba Reddy, B. V. (2020). Tandem Prins cyclization for the synthesis of indole fused spiro-1,4-diazocane scaffolds. Organic & Biomolecular Chemistry, 18 (34), 6710–6715. https://doi.org/10.1039/d0ob01384f
- Kumar, Y., Ila, H. (2022). Domino Synthesis of Thiazolo-Fused Six- and Seven-Membered Nitrogen Heterocycles via Intramolecular Heteroannulation of In-Situ-Generated 2-(Het)aryl-4-amino-5-functionalized Thiazoles. The Journal of Organic Chemistry, 87 (18), 12397–12413. https://doi.org/10.1021/acs.joc.2c01673
- Fan, L., Zhu, X., Liu, X., He, F., Yang, G., Xu, C., Yang, X. (2023). Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules, 28 (4), 1647. https://doi.org/10.3390/molecules28041647
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mykhailo Hoidyk, Andriy Karkhut, Sviatoslav Polovkovych, Roman Lesyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.



