Technology scaling for obtaining N,N –dibenzyl amide of malonic acid – a potential anticonvulsant – in industrial environments

Authors

  • Василь Миколайович Кушнірук National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002, Ukraine
  • Інна В’ячеславівна Ковалевська National University of Pharmacy 53 Pushkinska str., Kharkov, Ukraine, 61002, Ukraine
  • Олена Анатоліївна Рубан National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-2456-8210
  • Наталія Василівна Гарна National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002, Ukraine
  • Вікторія Акопівна Георгіянц National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002, https://orcid.org/0000-0001-8794-8010

DOI:

https://doi.org/10.15587/2519-4852.2016.87441

Keywords:

synthesis, N, N-dybenzyl amid of malonic acid, anticonvulsant activity, reaction latency, reagents ratio

Abstract

In result of a targeted synthesis, a promising substance for new anticonvulsant drug creation – symmetrical dybenzyl amid of malonic acid – was found.

The ability to be synthesized in one stage from available reagents and with high yield, as well as to show in animal experiments anticonvulsant activity with low toxicity is specific for the given substance.

The aim of our research was to determine optimal conditions for synthesis of N,N- dybenzyl amid of malonic acid and to scale the method in industrial production.

Methods. N,N- dybenzyl amid of malonic acid was obtained by synthesis. Purity was estimated using chromatographic methods. Crystals microscopy was carried out for study physical and chemical properties of the synthesized dybenzyl amid of malonic acid.

Results. In result of research, the method of N,N- dybenzyl amid of malonic acid synthesis was elaborated under manufacturing conditions; the influence of the  reaction latency and reagents ratio on the product yield was studied.

Conclusion. The method of N,N- dybenzyl amid of malonic acid synthesis was elaborated under manufacturing conditions considering modern requirements to the active pharmaceutical ingredients quality and safety. The choice of the initial substances, solvent, synthesis and purification conditions was substantiated to ensure the final product’s appropriate purity and high yield.

The obtained results can be used for N,N- dybenzyl amid of malonic acid synthesis in industrial environments

Author Biographies

Василь Миколайович Кушнірук, National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Pharmaceutical Chemistry

Інна В’ячеславівна Ковалевська, National University of Pharmacy 53 Pushkinska str., Kharkov, Ukraine, 61002

Candidate of pharmaceutical sciences, associate professor

Department of Industrial Technology of Drugs

Олена Анатоліївна Рубан, National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of pharmaceutical sciences, professor

Department of industrial technology of drug

Наталія Василівна Гарна, National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, associate professor

Department pharmaceutical chemistry

Вікторія Акопівна Георгіянц, National pharmaceutical university Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of pharmaceutical sciences, professor

Department pharmaceutical chemistry

References

  1. Georgiyants, V. A., Kushniruk, V. M., Bezugly, P. O. (2016). “Greening” of amizone synthesis when manufacturing. News of pharmacy, 1 (85), 50–53.
  2. Kourti, T. (2009). Quality by Design in the Pharmaceutical Industry: Process Modelling, Monitoring and Control using Latent Variable Methods. IFAC Proceedings Volumes, 42 (11), 36–41. doi: 10.3182/20090712-4-tr-2008.00007
  3. Pallagi, E., Ambrus, R., Szabo-Revesz, P., Csoka, I. (2015). Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. International Journal of Pharmaceutics, 491 (1-2), 384–392. doi: 10.1016/j.ijpharm.2015.06.018
  4. Tiwari, P., Chowdhury, S. R. (2014). Sustainable Production of Highly Active Pharmaceutical Ingredients (HAPIs). International Journal of Scientific and Research Publications, 4 (3), 1–5.
  5. Anastas, P. T., Warner, J. C. (1998). Green Chemistry: Theory and Practice. New York: Oxford University Press, 30.
  6. Dunn, P. J., Wells, A. S., Williams, M. T. (Eds.) (2010). Green chemistry in the pharmaceutical industry. Williams John Wiley & Sons, 368.
  7. Fengli, Yu., Yuliang, Z., Zilin, J. (2003). Progress on synthesis of ibuprofen with green methodology. Chinese Journal of Organic Chemistry, 23 (11), 1198–1204.
  8. Dale, D. J., Dunn, P. J., Golightly, C., Hughes, M. L., Levett, P. C., Pearce, A. K. et. al. (2000). The Chemical Development of the Commercial Route to Sildenafil: A Case History. Organic Process Research & Development, 4 (1), 17–22. doi: 10.1021/op9900683
  9. Dunn, P. J., Galvin, S., Hettenbach, K. (2004). The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by Green Chemistry metrics. Green Chemistry, 6 (1), 43–48. doi: 10.1039/b312329d
  10. Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R. et. al. (2010). Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science, 329 (5989), 305–309. doi: 10.1126/science.1188934
  11. Fortunak, J., Byrn, S., Dyson, B., Ekeocha, Z., Ellison, T., King, C. et. al. (2013). An Efficient, Green Chemical Synthesis of the Malaria Drug, Piperaquine. Tropical Journal of Pharmaceutical Research, 12 (5), 791–798. doi: 10.4314/tjpr.v12i5.20
  12. Nelson, W. M. (2003). Green solvents for chemistry. New York: Oxford University Press, 400.
  13. Chodankar, N. (2016). Use of Catalysis for API Manufacturing. Industrial Catalytic Processes for Fine and Specialty Chemicals, 509–595. doi: 10.1016/b978-0-12-801457-8.00012-4
  14. Georgіjanc, V. A., Maloshtan, L. M., Kostochka, V. O., Bezuglij, P. O., Ukrainec, І. V. (2004). Pat. # UA 706685A. Dibenzilamіd malonovoi kisloti, jakij projavljae protisudomnu aktivnіst. MPK A61K 31/165, A61K 31/19, A61P 25/08, C07C 55/08. # 20031212132; declareted: 23.12.2003; published 15.10.2004, Bul. # 10.
  15. Smit, A., Dilman, A. D. (2015). Osnovy sovremennogo organicheskogo sinteza. Moscow: BINOM. Laboratorija znanij, 750.
  16. Brown, W. H., Iverson, B. L., Anslyn, E., Foote, C. S. (2013). Organic Chemistry. Brooks Cole, 1312.
  17. Korolev, D. V., Suvorov, K. A. (2002). Opredelenie dispersnogo sostava poroshkov mikroskopicheskim metodom. Saint Petersburg: SPbGTI (TU), 24.

Published

2016-12-28

How to Cite

Кушнірук, В. М., Ковалевська, І. В., Рубан, О. А., Гарна, Н. В., & Георгіянц, В. А. (2016). Technology scaling for obtaining N,N –dibenzyl amide of malonic acid – a potential anticonvulsant – in industrial environments. ScienceRise: Pharmaceutical Science, (4 (4), 30–35. https://doi.org/10.15587/2519-4852.2016.87441

Issue

Section

Pharmaceutical Science