Application of salts of chaotropic anions in the development of hplc methods for the determination of meldonium in dosage forms

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.274469

Keywords:

chaotropic anions, dosage forms, HPLC, meldonium, spectrophotometry, validation

Abstract

The aim of the work was to create an approach for the development of HPLC methods for the determination of meldonium in dosage forms with the usage of salts of chaotropic anions in mobile phases.

Material and methods. Analytical equipment: Shimadzu UPLC system LC-40 PDA; Shimadzu Nexera-i LC-2040C 3D-Plus, controlled by software Lab Solution version 5.97, electronic laboratory balance RAD WAG AS 200/C, pH-meter I-160MI. Meldonium dihydrate (purity 99.3 %) was purchased from Sigma-Aldrich (Switzerland), and Vasopro capsules 500 mg were purchased from a local pharmacy. Chromatographic conditions: Agilent Zorbax C-18 SB 150 mm x 4.6 mm 3.5 μm column was used (Agilent Technologies, USA). Mobile phases: 1) 0.25 % KPF6 w/v – 0.1 % v/v 85 %H3PO4 95 % – 5 % ACN, 2) 0.3 % bis-(trifluoromethane)sulfonimide lithium salt 97 % w/v – 0.1 %v/v 85 % H3PO4 80 % – 20 % acetonitrile. Flow rate - 1mL/min, T=32 °C, detection UV=at 4 channels - 190 nm, 195 nm, 200 nm, 205 nm.

Results and discussion. We have proposed two approaches using two different salts of chaotropic anions - potassium hexafluorophosphate and bis-(trifluoromethane)sulfonimide lithium salt – for the HPLC method development. The chaotropic effects of these anions toward meldonium strongly influenced the analyte migratory behaviour. Both mobile phases involved, in addition to the use of a chaotrope, also the use of acetonitrile and pH adjustment with 0.1 % v/v 85 % H3PO4 solution. The detection wavelength (190 nm, 195 nm, 200 nm, 205 nm) was selected experimentally. The results were obtained for 8 concepts. Parameters of the chromatographic system confirm the conclusions and results of this investigation for the influence of chaotropic salts on N-containing molecules in an acidic pH medium, by increasing their retentivity and improving peak shape and uniformity homogeneity, even on the column without end-capping and base-deactivating. Validation of the analytical method was carried out following the requirements of SPhU. Conclusions. HPLC methods for the determination of meldonium in dosage forms have been developed, using positive impacts of chaotropic salts on the molecules containing N-atoms in their molecule on their retentions and peak symmetries on the chromatogram. The validation of the analytical methods showed their suitability for pharmaceutical analysis

Author Biographies

Mariana Horyn, I. Horbachevsky Ternopil National Medical University

Assistant

Department of Pharmaceutical Chemistry

Marjan Piponski, Replek Farm Ltd. Company for pharmaceutical-chemical products

PhD, Head of Department

Instrumental Analysis, Quality Control Department

Tetiana Zaremba, I. Horbachevsky Ternopil National Medical University

Department of Pharmaceutical Chemistry

Tetyana Kucher, I. Horbachevsky Ternopil National Medical University

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Svetlana Krstevska Balkanov, University Clinic at Medical Faculty Skopje

PhD

Clinic for Haematology

Tanja Bakovska Stoimenova, Replek Farm Ltd. Company for pharmaceutical-chemical products

PhD, Specialist

Instrumental analysis, Quality Control Department

Dmytro Korobko, I. Horbachevsky Ternopil National Medical University

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Nataliia Potikha, I. Horbachevsky Ternopil National Medical University

PhD, Associate Professor

Department of Functional and Laboratory Diagnostics

Liubomyr Kryskiw, I. Horbachevsky Ternopil National Medical University

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Liliya Logoyda, I. Horbachevsky Ternopil National Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical Chemistry

References

  1. Dambrova, M., Liepinsh, E., Kalvinsh, I. (2002). Mildronate Cardioprotective Action through Carnitine-Lowering Effect. Trends in Cardiovascular Medicine, 12 (6), 275–279. doi: https://doi.org/10.1016/s1050-1738(02)00175-5
  2. Sjakste, N., Kalvinsh, I. (2006). Mildronate: an antiischemic drug with multiple indications. Pharmacologyonline, 1, 1–18.
  3. Liepinsh, E., Vilskersts, R., Loca, D., Kirjanova, O., Pugovichs, O., Kalvinsh, I., Dambrova, M. (2006). Mildronate, an Inhibitor of Carnitine Biosynthesis, Induces an Increase in Gamma-Butyrobetaine Contents and Cardioprotection in Isolated Rat Heart Infarction. Journal of Cardiovascular Pharmacology, 48 (6), 314–319. doi: https://doi.org/10.1097/01.fjc.0000250077.07702.23
  4. European Pharmacopoeia. 10th edn. (2020). Available at: https://cymitquimica.com/products/41-PUB200379/european-pharmacopoeia-10th-edition-103-104-105-electronic-version-bilingual/
  5. European Pharmacopoeia. 11 ed. (2021). Available at: https://www.edqm.eu/en/web/edqm/european-pharmacopoeia-ph.-eur.-11th-edition
  6. Lv, Y.-F., Hu, X., Bi, K.-S. (2007). Determination of mildronate in human plasma and urine by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 852 (1-2), 35–39. doi: https://doi.org/10.1016/j.jchromb.2006.12.031
  7. Peng, Y., Yang, J., Wang, Z., Wang, J., Liu, Y., Luo, Z., Wen, A. (2010). Determination of mildronate by LC–MS/MS and its application to a pharmacokinetic study in healthy Chinese volunteers. Journal of Chromatography B, 878 (5-6), 551–556. doi: https://doi.org/10.1016/j.jchromb.2009.12.030
  8. Pidpruzhnykov, Y. V., Sabko, V. E., Iurchenko, V. V., Zupanets, I. A. (2011). UPLC-MS/MS method for bioequivalence study of oral drugs of meldonium. Biomedical Chromatography, 26 (5), 599–605. doi: https://doi.org/10.1002/bmc.1703
  9. Görgens, C., Guddat, S., Dib, J., Geyer, H., Schänzer, W., Thevis, M. (2015). Mildronate (Meldonium) in professional sports – monitoring doping control urine samples using hydrophilic interaction liquid chromatography – high resolution/high accuracy mass spectrometry. Drug Testing and Analysis, 7 (11-12), 973–979. doi: https://doi.org/10.1002/dta.1788
  10. Horyn, M., Logoyda, L. (2020). Bioanalytical method development and validation for the determination of metoprolol and meldonium in human plasma. Pharmacia, 67 (2), 39–48. doi: https://doi.org/10.3897/pharmacia.67.e50397
  11. Oliveira, D., de Araújo, A., Ribeiro, W., Silva, D., Duarte, A. C., de Sousa, V., Pereira, H. G. (2021). Screening method of mildronate and over 300 doping agents by reversed-phase liquid chromatography-high resolution mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 195, 113870. doi: https://doi.org/10.1016/j.jpba.2020.113870
  12. Sahartova, O., Shatz, V., Kalvinš, I. (1993). HPLC analysis of mildronate and its analogues in plasma. Journal of Pharmaceutical and Biomedical Analysis, 11 (10), 1045–1047. doi: https://doi.org/10.1016/0731-7085(93)80068-c
  13. Azarian, A. A., Temerdashev, A. Z., Dmitrieva, E. V. (2017). Opredelenie meldoniia v moche cheloveka metodom VEZhKh s tandemnym mass-spektrometricheskim detektirovaniem. Zhurnal analiticheskoi khimii, 72 (10), 885–889. doi: https://doi.org/10.7868/s0044450217100048
  14. Görgens, C., Guddat, S., Bosse, C., Geyer, H., Pop, V., Schänzer, W., Thevis, M. (2017). The atypical excretion profile of meldonium: Comparison of urinary detection windows after single- and multiple-dose application in healthy volunteers. Journal of Pharmaceutical and Biomedical Analysis, 138, 175–179. doi: https://doi.org/10.1016/j.jpba.2017.02.011
  15. Kim, Y., Jeong, D., Min, H., Sung, C., Park, J. H., Son, J., Kim, K. H. (2017). Method for screening and confirming meldonium in human urine by high-resolution mass spectrometry and identification of endogenous interferences for anti-doping testing. Mass Spectrometry Letters, 8 (2), 39–43. doi: https://doi.org/10.5478/MSL.2017.8.2.39
  16. Parr, M. K., Botrè, F. (2022). Supercritical fluid chromatography mass spectrometry as an emerging technique in doping control analysis. TrAC Trends in Analytical Chemistry, 147, 116517. doi: https://doi.org/10.1016/j.trac.2021.116517
  17. Cai, L.-J., Zhang, J., Peng, W.-X., Zhu, R.-H., Yang, J., Cheng, G., Wang, X.-M. (2011). Determination of Mildronate in Human Plasma and Urine by UPLC–Positive Ion Electrospray Tandem Mass Spectrometry. Chromatographia, 73 (7-8), 659–665. doi: https://doi.org/10.1007/s10337-010-1839-8
  18. Tretzel, L., Görgens, C., Geyer, H., Thomas, A., Dib, J., Guddat, S. et al. (2016). Analyses of Meldonium (Mildronate) from Blood, Dried Blood Spots (DBS), and Urine Suggest Drug Incorporation into Erythrocytes. International Journal of Sports Medicine, 37 (6), 500–502. doi: https://doi.org/10.1055/s-0036-1582317
  19. Rabin, O., Uiba, V., Miroshnikova, Y., Zabelin, M., Samoylov, A., Karkischenko, V. et al. (2018). Meldonium long‐term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers. Drug Testing and Analysis, 11 (4), 554–566. doi: https://doi.org/10.1002/dta.2521
  20. Forsdahl, G., Jančić-Stojanović, B., Anđelković, M., Dikić, N., Geisendorfer, T., Jeitler, V., Gmeiner, G. (2018). Urinary excretion studies of meldonium after multidose parenteral application. Journal of Pharmaceutical and Biomedical Analysis, 161, 289–295. doi: https://doi.org/10.1016/j.jpba.2018.08.053
  21. Rusu, L. D., Bratu, I., Măruțoiu, C., Moldovan, Z., Rada, M. (2020). Analytical methods for meldonium determination in urine samples. Analytical Letters, 54 (1-2), 233–241. doi: https://doi.org/10.1080/00032719.2020.1748043
  22. Temerdashev, A., Azaryan, A., Dmitrieva, E. (2020). Meldonium determination in milk and meat through UHPLC-HRMS. Heliyon, 6 (8), e04771. doi: https://doi.org/10.1016/j.heliyon.2020.e04771
  23. Donchenko, А., Nahorna, N., Vasyuk, S. (2018). Development and validation of spectrophotometric method for the determination of meldonium dihydrate in dosage forms. ScienceRise: Pharmaceutical Science, 4 (14), 23–27. doi: https://doi.org/10.15587/2519-4852.2018.141397
  24. Hmelnickis, J., Pugovičs, O., Kažoka, H., Viksna, A., Susinskis, I., Kokums, K. (2008). Application of hydrophilic interaction chromatography for simultaneous separation of six impurities of mildronate substance. Journal of Pharmaceutical and Biomedical Analysis, 48 (3), 649–656. doi: https://doi.org/10.1016/j.jpba.2008.06.011
  25. Cao, G., Lu, R., Hu, X. (2005). Determination of mildronate and related substances by HPLC-ELSD. Chinese pharmaceutical journal, 40 (11), 864.
  26. Lü, R. F., Cao, G. Y., Hu, X., Zhang, J. R. (2006). HPLC Assay and determination of related substance for mildronate injection. Chinese Journal of Pharmaceutical Analysis, 26 (3), 358–360.
  27. Meldonium. Available at: https://go.drugbank.com/drugs/DB13723
  28. Kazakevich, Y. V., LoBrutto, R., Vivilecchia, R. (2005). Reversed-phase high-performance liquid chromatography behavior of chaotropic counteranions. Journal of Chromatography A, 1064 (1), 9–18. doi: https://doi.org/10.1016/j.chroma.2004.11.104
  29. Flieger, J. (2006). The effect of chaotropic mobile phase additives on the separation of selected alkaloids in reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1113 (1-2), 37–44. doi: https://doi.org/10.1016/j.chroma.2006.01.090
  30. Pandey, S., Fletcher, K. A., Baker, S. N., Baker, G. A. (2004). Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures. The Analyst, 129 (7), 569. doi: https://doi.org/10.1039/b402145m
  31. Kazakevich, Y. V., Lobrutto, R. (Eds.) (2007). HPLC for pharmaceutical scientists. John Wiley & Sons, 1104. doi: https://doi.org/10.1002/0470087951
  32. State Pharmacopoeia of Ukraine. Vol. 1 (2015). SE “Ukrainian Scientific Pharmacopoeial Center for Quality of Medicines”. Kharkiv: SE “Ukrainian Scientific Pharmacopoeial Center for Quality of Medicines, 11148.
  33. Pena-Pereira, F., Wojnowski, W., Tobiszewski, M. (2020). AGREE – Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 92 (14), 10076–10082. doi: https://doi.org/10.1021/acs.analchem.0c01887

Downloads

Published

2023-02-28

How to Cite

Horyn, M., Piponski, M., Zaremba, T., Kucher, T., Krstevska Balkanov, S., Bakovska Stoimenova, T., Korobko, D., Potikha, N., Kryskiw, L., & Logoyda, L. (2023). Application of salts of chaotropic anions in the development of hplc methods for the determination of meldonium in dosage forms. ScienceRise: Pharmaceutical Science, (1(41), 14–22. https://doi.org/10.15587/2519-4852.2023.274469

Issue

Section

Pharmaceutical Science