Modelling of the composition of emulsion medicines and cosmetics stabilized by a biocomplex of surfactant substances based on rhamnolipids Pseudomonas sp. PS-17

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.282367

Keywords:

emulsions, emulsifiers, rhamnolipids Pseudomonas sp. PS-17, medicines, cosmetics, hydrophilic-lipophilic balance

Abstract

The aim. To study the biocomplex of surfactants based on rhamnolipids Pseudomonas sp. PS-17 (biocomplex PS) as an emulsifier and co-emulsifier by using the method of modelling the composition of emulsions for use in dermatology.

Materials and methods. The biocomplex PS is a biogenic surface-active complex synthesized by bacteria of the genus Pseudomonas, which is a viscous mass that includes rhamnolipids, which make up to 80 % of the biocomplex, as well as alginate and water. The methods of computer simulation of semi-automated selection of the composition of the oil phase and emulsifiers of medicinal or cosmetic emulsions developed in the MO Excel program were used. In modelling processes, the biocomplex PS was studied as an independent emulsifier in o/w type emulsions, as well as a co-emulsifier of this type of emulsions in combination with type II emulsifiers.

Results. The substantiation of the concentration of emulsifiers in the composition of emulsion medicinal and cosmetic products is mainly carried out based on experimental studies; therefore, it requires a long time and is expensive. To reduce the number of technological experiments in the development of emulsion products stabilized by a biocomplex of surfactants based on biocomplex PS, a method of computer simulation of the composition of emulsions in the MO Excel program was developed and used. A method based on the application of the hydrophilic-lipophilic balance system. Two examples of solving specific problems of choosing a complex emulsifier and the composition of the oil phase components of the emulsion product are given.

Conclusions: The use of a semi-automated modelling system provides a reasoned choice of the composition of the oil phase of the emulsion when using the PS biocomplex as an independent emulsifier or the choice of the ratio between the PS biocomplex and the type II emulsifier when using a complex emulsifier and allows rational experimental study

Author Biographies

Iryna Pelekh-Bondaruk, Danylo Halytsky Lviv National Medical University

Postgraduate Student

Department of Drug Technology and Biopharmaceutics

Ivan Revyatskyy, Danylo Halytsky Lviv National Medical University

PhD

Department of Management and Economy of Pharmacy, Medicine Technology and Pharmacoeconomics

Svitlana Bilous, Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences

Department of Drug Technology and Biopharmaceutics

References

  1. Kurrimboccus, F., Orchard, A., Danckwerts, M. P., van Vuuren, S. (2021). Antimicrobial Formulation of Chrysopogon zizanioides Essential Oil in an Emulsified Lotion for Acne. Planta Medica, 88 (13), 1256–1262. doi: https://doi.org/10.1055/a-1699-3284
  2. Sanad, R. A. el B., Mabrouk, M. I. (2015). Development and assessment of stable formulations containing two herbal antimicrobials: Allium sativum L. and Eruca sativa miller seed oils. Drug Development and Industrial Pharmacy, 42 (6), 958–968. doi: https://doi.org/10.3109/03639045.2015.1096280
  3. Watanabe, T., Kawai, T., Nonomura, Y. (2017). Effects of Fatty Acid Addition to Oil-in-water Emulsions Stabilized with Sucrose Fatty Acid Ester. Journal of Oleo Science, 67 (3), 307–313. doi: https://doi.org/10.5650/jos.ess17097
  4. Motoyama, T., Katsuumi, Y., Sasakura, H., Nakamura, T., Suzuki, H., Tsuchiya, K. et al. (2022). Preparation of Highly Stable Oil-in-Water Emulsions with High Ethanol Content Using Polyglycerol Monofatty Acid Esters as Emulsifiers. Journal of Oleo Science, 71 (6), 829–837. doi: https://doi.org/10.5650/jos.ess21430
  5. Walters, K. A., Roberts, M. S. (Eds.) (2008). Dermatologic, Cosmeceutic, and Cosmetic Development. CRC Press, 648 doi: https://doi.org/10.3109/9780849375903
  6. Pasquali, R. C., Helguera, G. F. (2013). “True” Hydrophilic-Lipophilic Balance of Polyoxyethylene Fatty Acid Esters Nonionic Surfactants. Journal of Dispersion Science and Technology, 34 (5), 716–721. doi: https://doi.org/10.1080/01932691.2011.653922
  7. Nollet, M., Boulghobra, H., Calligaro, E., Rodier, J. (2019). An efficient method to determine the Hydrophile‐Lipophile Balance of surfactants using the phase inversion temperature deviation of C i E j / n ‐octane/water emulsions. International Journal of Cosmetic Science, 41 (2), 99–108. doi: https://doi.org/10.1111/ics.12516
  8. Karpenko, O. V., Martyniuk, N. V., Shulha, O. M., Pokynbroda, T. Ya., Vildanova, R. I., Shchehlova, N. S. (2004). Pat. No. 71792 A UA. Poverkhnevo-aktyvnyi biopreparat. MPK: S12 N 1/02, C12 R 1:38; No. 200331212344; declareted: 25.12.2003; published: 12.2004, Bul. No. 12, 4.
  9. Yefimova, V., Pilipenko, T., Nikora, O., Nevpryga, P. (2018). Development Of Emulsion Cosmetics Product Based on Colloidal Regularities. Technical Sciences and Technologies, 1 (11), 178–187. doi: https://doi.org/10.25140/2411-5363-2018-1(11)-178-187
  10. Lupak, M., Khokhla, M., Hachkova, G., Shulga, O., Sheglova, N., Vildanova, R., Zyn, A., Sybirna, N. (2015). Application of biogenic surfactants for stabilization on alkaloid-free fraction isolated from Galega officinalis extract. Studia Biologica, 9 (1), 25–36. doi: https://doi.org/10.30970/sbi.0901.397
  11. Voronov, S. A., Stetsyshyn, Yu. B., Panchenko, Yu. V., Vasyliev, V. P. (2010). Toksykolohichna khimiia kharchovykh produktiv ta kosmetychnykh zasobiv. Lviv: Vydavnytstvo Lvivskoi politekhniky, 316.
  12. Ruban, O. A., Pertsev, I. M., Kutsenko, S. A., Maslii, Yu. S., (2016). Dopomizhni rechovyny u vyrobnytstvi likiv. Kharkiv: Zoloti storinky, 270.
  13. The HLB System (1980). Wilmington: ICI Americas Inc. Available at: http://www.scientificspectator.com/documents/personal%20care%20spectator/The%20HLB%20Book%20ICI.pdf
  14. Laurier, Dr., Schramm, L. (2005) Emulsions, Foams, and Suspensions: Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 448. doi: https://doi.org/10.1002/3527606750
  15. Pelekh, I. R., Bilous, S. B. (2018). Modern approaches to use emulators and conservatives in the composition of dermatological drugs. Pharmaceutical Review, 3, 52–57. doi: https://doi.org/10.11603/2312-0967.2018.3.9453
  16. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L. et al. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87 (2), 427–444. doi: https://doi.org/10.1007/s00253-010-2589-0
  17. Pyroh, T. P., Ihnatenko, S. V. (2008). Mikrobni poverkhnevo-aktyvni rechovyny: problemy promyslovoho vyrobnytstva. Biotekhnolohiia, 1 (4), 29–38.
  18. Pokynbroda, T. Ya., Karpenko, O. V., Lubenets, V. I., Martyniuk, N. B., Zin, I. M. (2017). Biosyntez par mikroorhanizmamy rodiv Pseudomonas na soievii olii ta doslidzhennia yikh vlastyvostei. Visnyk natsionalnoho universytetu "Lvivska politekhnika". Seriia: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 868, 222–228.
  19. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., García, F., & Manresa, A. (2001). Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes. Langmuir, 17 (5), 1367–1371. doi: https://doi.org/10.1021/la0011735
  20. Sim, L., Ward, O. P., Li, Z.-Y. (1997). Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology and Biotechnology, 19 (4), 232–238. doi: https://doi.org/10.1038/sj.jim.2900450
  21. Vatsa, P., Sanchez, L., Clement, C., Baillieul, F., Dorey, S. (2010). Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes. International Journal of Molecular Sciences, 11 (12), 5095–5108. doi: https://doi.org/10.3390/ijms11125095
  22. Shulha, O. M., Karpenko, O. V., Yelisieiev, S. A., Shchehlova, N. S., Vildanova-Martsyshyn, R. I. (1996). Pat. No. 10467 A. Shtam Pseudomonas SP PS-17 –produtsent pozaklitynnykh bioPAR i biopolimeru. MPK: S12 N 1/20, C12 R 1/38. No. 95041549; declareted: 05.04.1995; published: 25.12.1996, Bul. 4.
  23. Pokynbroda, T. Ya. (2018). Biotekhnolohiia poverkhnevo-aktyvnykh produktiv bakterii rodu pseudomonas, yikh vlastyvosti ta zastosuvannia. Kyiv, 270.
  24. Revyatskyy, I. Yu., Pelekh-Bondaruk, I. R., Bilous, S. B. (2021). Modeling of the process of emulsifiers selecting in emulsion medicines and cosmetics. Pharmacology OnLine, 3, 139–150. Available at: https://pharmacologyonline.silae.it/files/newsletter/2021/vol3/PhOL_2021_3_N014_Revyatskyy.pdf
  25. Petrovskaya, L. S., Bespalaya, Yu. A., Nikitina, M. V. (2017). Study of the foam-washing base means for babies. Management, economy and quality assurance in pharmacy, 4 (52), 20–28. doi: https://doi.org/10.24959/uekj.17.39
  26. Zuikina, S. S., Kukhtenko, Н. P., Vyshnevska, L. I. (2020). Rheological researches on the development of the bigels composition for complex mastopathy therapy. Management, Economy and Quality Assurance in Pharmacy, 2 (62), 19–26. doi: https://doi.org/10.24959/uekj.20.14
  27. Yarema, O. I., Fedorovska, M. I. (2014). Development of the emulsion base composition when creating the medicinal cosmetic product used in androgenetic alopecia. News of Pharmacy, 2 (78), 15–19. Available at: https://nuph.edu.ua/wp-content/uploads/2015/04/VF2-14-15-19.pdf
  28. Mishchenko, O. I., Tykhonov, O. I. (2011). Vyvchennia vplyvu emulhatoriv na reolohichni vlastyvosti kombinovanoi miakoi likarskoi formy khondroprotektornoi dii. Visnyk farmatsii, 3 (67), 3–7. Available at: https://dspace.nuph.edu.ua/bitstream/123456789/890/1/03-07.pdf
Modelling of the composition of emulsion medicines and cosmetics stabilized by a biocomplex of surfactant substances based on rhamnolipids Pseudomonas sp. PS-17

Downloads

Published

2023-06-30

How to Cite

Pelekh-Bondaruk, I., Revyatskyy, I., & Bilous, S. (2023). Modelling of the composition of emulsion medicines and cosmetics stabilized by a biocomplex of surfactant substances based on rhamnolipids Pseudomonas sp. PS-17. ScienceRise: Pharmaceutical Science, (3(43), 31–38. https://doi.org/10.15587/2519-4852.2023.282367

Issue

Section

Pharmaceutical Science