Analysis of the current status of probiotic drug development
DOI:
https://doi.org/10.15587/2519-4852.2025.322767Keywords:
probiotics, prebiotics, postbiotics, dosage forms, new generation of probiotics, recombinant strains, cultivation, lyophilization, prevention and treatmentAbstract
The aim of the work is to analyze the current state of the creation of probiotic preparations.
Materials and methods. The work analyzes strains of probiotic bacteria Lactobacillus, Bifidobacterium, Streptococcus, Bacillus, Saccharomyces and other genera. Methods for obtaining probiotics are considered, including the selection of producer strains, the scheme and parameters of culturing producers, collection and concentration, lyophilization, formulation of the product composition, selection of the dosage form. Following technological methods for obtaining dosage forms of probiotics are used: capsules, emulsions, hydrogels, suppositories, tablets, etc.
Results. The main functions of probiotics in various parts of the human body are considered. Bacterial strains that are part of prophylactic and medicinal preparations are analyzed. The creation of new probiotic preparations is carried out in several directions: the creation of recombinant microorganisms by genetic engineering methods and the development of new generation therapeutic preparations to improve human health, as well as the development of probiotic delivery systems into the human body. Engineered probiotics are a type of new microorganisms obtained by modifying the original bacteria and yeast. The possibility of using a new generation of strains (Akkermansia muciniphila, Ruminococcus bromii, etc.) that demonstrate high therapeutic potential in the treatment of metabolic diseases is discussed. New data and a deep understanding of the microbiome have helped to identify useful commensals and their therapeutic potential. The prospects for the use of probiotics, prebiotics and postbiotics in preparations, including a new generation of probiotic strains, are shown. The effectiveness of probiotic products for restoring the microflora of the oral cavity, intestines and vagina in various dosage forms was assessed: hydrogels, capsules and tablets.
Conclusions. Functional products of probiotic and postbiotic origin have antiviral, antibacterial and antitumor activity. Probiotics are effective and safe, have high therapeutic potential for the prevention and treatment of diseases of various etiologies. Various dosage forms of probiotics are highly effective for restoring the microbiome of the human body. The prospects for the use of various probiotic strains, including a new generation of microorganisms, are discussed
References
- Baral, K. C., Bajracharya, R., Lee, S. H., Han, H.-K. (2021). Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. International Journal of Nanomedicine, 16, 7535–7556. https://doi.org/10.2147/ijn.s337427
- Mei, Z., Li, D. (2022). The role of probiotics in vaginal health. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.963868
- Chugh, P., Dutt, R., Sharma, A., Bhagat, N., Dhar, M. S. (2020). A critical appraisal of the effects of probiotics on oral health. Journal of Functional Foods, 70, 103985. https://doi.org/10.1016/j.jff.2020.103985
- Wang, G., Chen, Y., Xia, Y., Song, X., Ai, L. (2022). Characteristics of Probiotic Preparations and Their Applications. Foods, 11 (16), 2472. https://doi.org/10.3390/foods11162472
- Hathi, Z., Mettu, S., Priya, A., Athukoralalage, S., Lam, T. N., Choudhury, N. R. et al. (2021). Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives. Biochemical Engineering Journal, 176, 108199. https://doi.org/10.1016/j.bej.2021.108199
- Vandenplas, Y., Huys, G., Daube, G. (2015). Probiotics: an update. Jornal de Pediatria, 91 (1), 6–21. https://doi.org/10.1016/j.jped.2014.08.005
- Aleman, R. S., Yadav, A. (2023). Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Applied Microbiology, 4 (1), 47–69. https://doi.org/10.3390/applmicrobiol4010004
- Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12 (1), 184. https://doi.org/10.3390/cells12010184
- Liu, Y., Wang, J., Wu, C. (2022). Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.634897
- Liu, Y., Alookaran, J. J., Rhoads, J. M. (2018). Probiotics in Autoimmune and Inflammatory Disorders. Nutrients, 10 (10), 1537. https://doi.org/10.3390/nu10101537
- Sil, M., Mitra, S., Goswami, A. (2023). Probiotics and immunity: An overview. Viral, Parasitic, Bacterial, and Fungal Infections. Academic Press, 847–861. https://doi.org/10.1016/b978-0-323-85730-7.00007-2
- Ansari, A., Son, D., Hur, Y. M., Park, S., You, Y.-A., Kim, S. M. et al. (2023). Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients, 15 (8), 1862. https://doi.org/10.3390/nu15081862
- Khyzhniak, O., Krasnopolskyi, Yu. (2013). Biotekhnolohichni aspekty otrymannia kompleksnoho preparatu yakii mistyt rizni shtamy pro biotychnykh kultur. Visnyk NTU «KhPI», 978 (4), 113–120.
- Urrutia-Baca, V. H., Hernández-Hernández, S. N., Martínez, L. M., Dávila-Vega, J. P., Chuck-Hernández, C. (2023). The Role of Probiotics in Dairy Foods and Strategies to Evaluate Their Functional Modifications. Food Reviews International, 40 (1), 434–456. https://doi.org/10.1080/87559129.2023.2172426
- Momin, E. S., Khan, A. A., Kashyap, T., Pervaiz, M. A., Akram, A., Mannan, V. et al. (2023). The Effects of Probiotics on Cholesterol Levels in Patients With Metabolic Syndrome: A Systematic Review. Cureus, 15 (4), e37567. https://doi.org/10.7759/cureus.37567
- Krasnopolskii, Iu., Borshchevskaia, M. (2009). Farmatcevticheskaia biotekhnologiia: tekhnologiia proizvodstva immunobiologicheskikh preparatov. Kharkov: NTU «KhPI», 352.
- Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W. et al. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1216674
- Górska, A., Przystupski, D., Niemczura, M. J., Kulbacka, J. (2019). Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy. Current Microbiology, 76 (8), 939–949. https://doi.org/10.1007/s00284-019-01679-8
- Śliżewska, K., Markowiak-Kopeć, P., Śliżewska, W. (2020). The Role of Probiotics in Cancer Prevention. Cancers, 13 (1), 20. https://doi.org/10.3390/cancers13010020
- Naeem, H., Hassan, H. U., Shahbaz, M., Imran, M., Memon, A. G., Hasnain, A. et al. (2024). Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. Journal of Food Biochemistry, 2024, 1–23. https://doi.org/10.1155/2024/6632209
- Krasnopolskyi, Yu., Pylypenko, D. (2020). Farmatsevtychna biotekhnolohiia: biotekhnolohiia vyrobnytstva hotovykh likarskykh form. Kharkiv: «Drukarnia Madryd», 280.
- Kiepś, J., Dembczyński, R. (2022). Current Trends in the Production of Probiotic Formulations. Foods, 11 (15), 2330. https://doi.org/10.3390/foods11152330
- Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., Ouwehand, A. C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms, 7 (3), 83. https://doi.org/10.3390/microorganisms7030083
- Fenster, K. (2022). Impotent Steps in the Probiotic Manufacturing Process. Journal of Probiotics & Health, 10 (3), 260.
- Pertsev, I., Dmytriievskyi, D., Rybachuk, V., Khomenko, V., Hudzenko, O., Kotenko, O.; Pertsev, I. (Ed.) (2010). Dopomizhni rechovyny v tekhnolohikh likiv. Kharkiv: Zoloti storinky, 600.
- Oluwatosin, S. O., Tai, S. L., Fagan-Endres, M. A. (2022). Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic – towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnology Reports, 33, e00696. https://doi.org/10.1016/j.btre.2021.e00696
- Xu, C., Gantumur, M.-A., Sun, J., Guo, J., Ma, J., Jiang, Z. et al. (2024). Design of probiotic delivery systems for targeted release. Food Hydrocolloids, 149, 109588. https://doi.org/10.1016/j.foodhyd.2023.109588
- Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S. et al. (2023). A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Applied Food Research, 3 (1), 100248. https://doi.org/10.1016/j.afres.2022.100248
- Homayouni Rad, A., Pourjafar, H., Mirzakhani, E. (2023). A comprehensive review of the application of probiotics and postbiotics in oral health. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1120995
- Kandur, B., Ugurlu, T., Rayaman, E., Sahbaz, S. (2024). Oral Pharmabiotic Tablet formulations. Journal of Research in Pharmacy, 28 (1), 236–247. https://doi.org/10.29228/jrp.691
- Kim, W.-S., Cho, C.-S., Hong, L., Han, G. G., Kil, B. J., Kang, S.-K. et al. (2019). Oral Delivery of Probiotics Using pH-Sensitive Phthalyl Inulin Tablets. Journal of Microbiology and Biotechnology, 29 (2), 200–208. https://doi.org/10.4014/jmb.1811.11021
- Venema, K., Verhoeven, J., Verbruggen, S., Espinosa, L., Courau, S. (2019). Probiotic survival during a multi‐layered tablet development as tested in a dynamic, computer‐controlledin vitromodel of the stomach and small intestine (TIM‐1). Letters in Applied Microbiology, 69 (5), 325–332. https://doi.org/10.1111/lam.13211
- Hoffmann, A., Fischer, J. T., Daniels, R. (2020). Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Development and Industrial Pharmacy, 46 (11), 1753–1762. https://doi.org/10.1080/03639045.2020.1831013
- Bílik, T., Vysloužil, J., Naiserová, M., Muselík, J., Pavelková, M., Mašek, J. et al. (2022). Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems – Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study. Pharmaceutics, 14 (1), 127. https://doi.org/10.3390/pharmaceutics14010127
- Fülöpová, N., Chomová, N., Elbl, J., Mudroňová, D., Sivulič, P., Pavloková, S., Franc, A. (2023). Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics. Pharmaceutics, 15 (3), 910. https://doi.org/10.3390/pharmaceutics15030910
- Venema, K., Verhoeven, J., Beckman, C., Keller, D. (2020). Survival of a probiotic-containing product using capsule-within-capsule technology in an in vitro model of the stomach and small intestine (TIM-1). Beneficial Microbes, 11 (4), 403–410. https://doi.org/10.3920/bm2019.0209
- Cook, M. T., Tzortzis, G., Khutoryanskiy, V. V., Charalampopoulos, D. (2013). Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. Journal of Materials Chemistry B, 1 (1), 52–60. https://doi.org/10.1039/c2tb00126h
- Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A. et al. (2020). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12 (11), 2702. https://doi.org/10.3390/polym12112702
- Caló, E., Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
- Kwiecień, I., Kwiecień, M. (2018). Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels, 4 (2), 47. https://doi.org/10.3390/gels4020047
- Dafe, A., Etemadi, H., Dilmaghani, A., Mahdavinia, G. R. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536–543. https://doi.org/10.1016/j.ijbiomac.2017.01.060
- Praepanitchai, O.-A., Noomhorm, A., Anal, A. K. (2019). Survival and Behavior of Encapsulated Probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy Protein Isolate-Based Hydrogel Beads in Different Processing Conditions (pH and Temperature) and in Pasteurized Mango Juice. BioMed Research International, 2019, 1–8. https://doi.org/10.1155/2019/9768152
- Dou, X., Li, G., Wang, S., Shao, D., Wang, D., Deng, X. et al. (2023). Probiotic-loaded calcium alginate/fucoidan hydrogels for promoting oral ulcer healing. International Journal of Biological Macromolecules, 244, 125273. https://doi.org/10.1016/j.ijbiomac.2023.125273
- Reddy, M. S. B., Ponnamma, D., Choudhary, R., Sadasivuni, K. K. (2021). A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 13 (7), 1105. https://doi.org/10.3390/polym13071105
- Corona-Escalera, A. F., Tinajero-Díaz, E., García-Reyes, R. A., Luna-Bárcenas, G., Seyfoddin, A., Padilla-de la Rosa, J. D. et al. (2022). Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics, 14 (12), 2759. https://doi.org/10.3390/pharmaceutics14122759
- Yasmin, R., Shah, M., Khan, S. A., Ali, R. (2017). Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 6 (2), 191–207. https://doi.org/10.1515/ntrev-2016-0009
- Tao, S., Zhang, S., Wei, K., Maniura‐Weber, K., Li, Z., Ren, Q. (2024). An Injectable Living Hydrogel with Embedded Probiotics as a Novel Strategy for Combating Multifaceted Pathogen Wound Infections. Advanced Healthcare Materials, 13 (27). https://doi.org/10.1002/adhm.202400921
- Kuhn, T., Aljohmani, A., Frank, N., Zielke, L., Mehanny, M., Laschke, M. W. et al. (2024). A cell-free, biomimetic hydrogel based on probiotic membrane vesicles ameliorates wound healing. Journal of Controlled Release, 365, 969–980. https://doi.org/10.1016/j.jconrel.2023.12.011
- Krasnopolskyi, Yu. M., Pylypenko, D. M. (2023). Stvorennia system dostavky antyheniv ta likiv na osnovi shtuchnykh i pryrodnykh lipidnykh nanochastynok: liposomy ta ekzosomy. Kharkiv: Drukarnia Madryd, 179.
- Liu, P., Lu, Y., Li, R., Chen, X. (2023). Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1153894
- Kerry-Barnard, S., Zhou, L., Phillips, L., Furegato, M., Witney, A. A., Sadiq, S. T., Oakeshott, P. (2022). Vaginal microbiota in ethnically diverse young women who did or did not develop pelvic inflammatory disease: community-based prospective study. Sexually Transmitted Infections, 98 (7), 503–509. https://doi.org/10.1136/sextrans-2021-055260
- Spacova, I., O’Neill, C., Lebeer, S. (2020). Lacticaseibacillus rhamnosus GG inhibits infection of human keratinocytes by Staphylococcus aureus through mechanisms involving cell surface molecules and pH reduction. Beneficial Microbes, 11 (7), 703–716. https://doi.org/10.3920/bm2020.0075
- Zawistowska-Rojek, A., Kośmider, A., Stępień, K., Tyski, S. (2022). Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Archives of Microbiology, 204 (5). https://doi.org/10.1007/s00203-022-02889-8
- Sousa, D. N., Gaspar, C., Rolo, J., Donders, G. G. G., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, R., Palmeira-de-Oliveira, A. (2023). Assessment of Live Lactobacilli Recovery from Probiotic Products for Vaginal Application. Applied Microbiology, 3 (4), 1195–1203. https://doi.org/10.3390/applmicrobiol3040082
- Borges, S., Silva, J., Teixeira, P. (2013). The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 289 (3), 479–489. https://doi.org/10.1007/s00404-013-3064-9
- Abdolalipour, E., Mahooti, M., Salehzadeh, A., Torabi, A., Mohebbi, S. R., Gorji, A., Ghaemi, A. (2020). Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microbial Pathogenesis, 145, 104207. https://doi.org/10.1016/j.micpath.2020.104207
- Wei, G., Liu, Q., Wang, X., Zhou, Z., Zhao, X., Zhou, W. et al. (2023). A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Science Advances, 9 (20). https://doi.org/10.1126/sciadv.adg0949
- Li, X., Wang, H., Du, X., Yu, W., Jiang, J., Geng, Y. et al. (2017). Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin. Oncology Reports, 38 (3), 1561–1568. https://doi.org/10.3892/or.2017.5791
- Kandati, K., Belagal, P., Nannepaga, J. S., Viswanath, B. (2022). Role of probiotics in the management of cervical cancer: An update. Clinical Nutrition ESPEN, 48, 5–16. https://doi.org/10.1016/j.clnesp.2022.02.017
- Sun, Q., Yin, S., He, Y., Cao, Y., Jiang, C. (2023). Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials, 13 (15), 2185. https://doi.org/10.3390/nano13152185
- Dudek-Wicher, R., Junka, A., Paleczny, J., Bartoszewicz, M. (2020). Clinical Trials of Probiotic Strains in Selected Disease Entities. International Journal of Microbiology, 2020, 1–8. https://doi.org/10.1155/2020/8854119
- Troge, A., Scheppach, W., Schroeder, B. O., Rund, S. A., Heuner, K., Wehkamp, J. et al. (2012). More than a marine propeller – the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus. International Journal of Medical Microbiology, 302 (7-8), 304–314. https://doi.org/10.1016/j.ijmm.2012.09.004
- Cordonnier, C., Thévenot, J., Etienne-Mesmin, L., Denis, S., Alric, M., Livrelli, V., Blanquet-Diot, S. (2015). Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms, 3 (4), 725–745. https://doi.org/10.3390/microorganisms3040725
- Krasnopolskyi, Yu. M., Pylypenko, D. M. (2022). Farmatsevtychna biotekhnolohiia: sohodennia ta maibutnie. Kharkiv: TOV «Drukarnia Madryd», 151.
- Ma, J., Lyu, Y., Liu, X., Jia, X., Cui, F., Wu, X. et al. (2022). Engineered probiotics. Microbial Cell Factories, 21 (1). https://doi.org/10.1186/s12934-022-01799-0
- Drolia, R., Amalaradjou, M. A. R., Ryan, V., Tenguria, S., Liu, D., Bai, X. et al. (2020). Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nature Communications, 11 (1). https://doi.org/10.1038/s41467-020-20200-5
- Sorokulova, I. B. (1998). Izuchenie bezopasnosti ireaktogennosti novogo probiotika subali-na dlia dobrovoltcev. Mikrobiolohichnyi zhurnal, 60 (1), 43–46.
- Gurbatri, C. R., Lia, I., Vincent, R., Coker, C., Castro, S., Treuting, P. M. et al. (2020). Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 12 (530). https://doi.org/10.1126/scitranslmed.aax0876
- Seo, E., Weibel, S., Wehkamp, J., Oelschlaeger, T. A. (2012). Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. International Journal of Medical Microbiology, 302 (6), 276–287. https://doi.org/10.1016/j.ijmm.2012.05.002
- Mao, N., Cubillos-Ruiz, A., Cameron, D. E., Collins, J. J. (2018). Probiotic strains detect and suppress cholera in mice. Science Translational Medicine, 10 (445). https://doi.org/10.1126/scitranslmed.aao2586
- Laguna, J. G., Freitas, A. dos S., Barroso, F. A. L., De Jesus, L. C. L., De Vasconcelos, O. A. G. G., Quaresma, L. S. et al. (2024). Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1309160
- Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., Anandharamakrishnan, C. (2021). Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics and Antimicrobial Proteins, 14 (1), 15–48. https://doi.org/10.1007/s12602-021-09791-7
- Romero-Luna, H. E., Hernández-Mendoza, A., González-Córdova, A. F., Peredo-Lovillo, A. (2022). Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chemistry: X, 13, 100196. https://doi.org/10.1016/j.fochx.2021.100196
- Borrero, J., Chen, Y., Dunny, G. M., Kaznessis, Y. N. (2014). Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci. ACS Synthetic Biology, 4 (3), 299–306. https://doi.org/10.1021/sb500090b
- Hwang, I. Y., Koh, E., Wong, A., March, J. C., Bentley, W. E., Lee, Y. S., Chang, M. W. (2017). Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nature Communications, 8 (1). https://doi.org/10.1038/ncomms15028
- Torres-Sánchez, A., Ruiz-Rodríguez, A., Ortiz, P., Moreno, M. A., Ampatzoglou, A., Gruszecka-Kosowska, A. et al. (2022). Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. International Journal of Molecular Sciences, 23 (21), 12917. https://doi.org/10.3390/ijms232112917
- Kumari, M., Singh, P., Nataraj, B. H., Kokkiligadda, A., Naithani, H., Azmal Ali, S. et al. (2021). Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 150, 110716. https://doi.org/10.1016/j.foodres.2021.110716
- Abouelela, M. E., Helmy, Y. A. (2024). Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms, 12 (3), 430. https://doi.org/10.3390/microorganisms12030430
- Elzinga, J., Narimatsu, Y., de Haan, N., Clausen, H., de Vos, W. M., Tytgat, H. L. P. (2024). Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nature Communications, 15 (1). https://doi.org/10.1038/s41467-024-48770-8
- Rangarajan, A. A., Chia, H. E., Azaldegui, C. A., Olszewski, M. H., Pereira, G. V., Koropatkin, N. M., Biteen, J. S. (2022). Ruminococcus bromii enables the growth of proximal Bacteroides thetaiotaomicron by releasing glucose during starch degradation. Microbiology, 168 (4). https://doi.org/10.1099/mic.0.001180
- Nie, K., Ma, K., Luo, W., Shen, Z., Yang, Z., Xiao, M., Tong, T., Yang, Y., Wang, X. (2021). Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.757718
- Kang, X., Liu, C., Ding, Y., Ni, Y., Ji, F., Lau, H. C. H. et al. (2023). Roseburia intestinalisgenerated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+T cells. Gut, 72 (11), 2112–2122. https://doi.org/10.1136/gutjnl-2023-330291
- Tsilingiri, K., Barbosa, T., Penna, G., Caprioli, F., Sonzogni, A., Viale, G., & Rescigno, M. (2012). Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut, 61(7), 1007–1015. https://doi.org/10.1136/gutjnl-2011-300971
- Mishra, B., Mishra, A. K., Mohanta, Y. K., Yadavalli, R., Agrawal, D. C., Reddy, H. P. et al. (2024). Postbiotics: the new horizons of microbial functional bioactive compounds in food preservation and security. Food Production, Processing and Nutrition, 6 (1). https://doi.org/10.1186/s43014-023-00200-w
- Ma, L., Tu, H., Chen, T. (2023). Postbiotics in Human Health: A Narrative Review. Nutrients, 15 (2), 291. https://doi.org/10.3390/nu15020291
- Hijová, E. (2024). Postbiotics as Metabolites and Their Biotherapeutic Potential. International Journal of Molecular Sciences, 25 (10), 5441. https://doi.org/10.3390/ijms25105441
- Rajam, R., Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11 (1). https://doi.org/10.1186/s43088-022-00228-w
- Liu, H., Xie, M., Nie, S. (2020). Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Frontiers, 1 (1), 45–59. Portico. https://doi.org/10.1002/fft2.11
- Zhou, C., Zou, Y., Xu, R., Han, X., Xiang, Z., Guo, H. et al. (2023). Metal-phenolic self-assembly shielded probiotics in hydrogel reinforced wound healing with antibiotic treatment. Materials Horizons, 10 (8), 3114–3123. https://doi.org/10.1039/d3mh00033h
- Doar, N. W., Samuthiram, S. D. (2023). Qualitative Analysis of the Efficacy of Probiotic Strains in the Prevention of Antibiotic-Associated Diarrhea. Cureus, 15 (6), e40261. https://doi.org/10.7759/cureus.40261
- Agriopoulou, S., Tarapoulouzi, M., Varzakas, T., Jafari, S. M. (2023). Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms, 11 (12), 2896. https://doi.org/10.3390/microorganisms11122896
- Stavropoulou, E., Bezirtzoglou, E. (2020). Probiotics in Medicine: A Long Debate. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.02192

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olga Bliznjuk, Igor Ryshchenko, Nataliia Masalitina , Daria Pylypenko, Yuriy Krasnopolsky

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.