Analysis of the current status of probiotic drug development

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.322767

Keywords:

probiotics, prebiotics, postbiotics, dosage forms, new generation of probiotics, recombinant strains, cultivation, lyophilization, prevention and treatment

Abstract

The aim of the work is to analyze the current state of the creation of probiotic preparations.

Materials and methods. The work analyzes strains of probiotic bacteria Lactobacillus, Bifidobacterium, Streptococcus, Bacillus, Saccharomyces and other genera. Methods for obtaining probiotics are considered, including the selection of producer strains, the scheme and parameters of culturing producers, collection and concentration, lyophilization, formulation of the product composition, selection of the dosage form. Following technological methods for obtaining dosage forms of probiotics are used: capsules, emulsions, hydrogels, suppositories, tablets, etc.

Results. The main functions of probiotics in various parts of the human body are considered. Bacterial strains that are part of prophylactic and medicinal preparations are analyzed. The creation of new probiotic preparations is carried out in several directions: the creation of recombinant microorganisms by genetic engineering methods and the development of new generation therapeutic preparations to improve human health, as well as the development of probiotic delivery systems into the human body. Engineered probiotics are a type of new microorganisms obtained by modifying the original bacteria and yeast. The possibility of using a new generation of strains (Akkermansia muciniphila, Ruminococcus bromii, etc.) that demonstrate high therapeutic potential in the treatment of metabolic diseases is discussed. New data and a deep understanding of the microbiome have helped to identify useful commensals and their therapeutic potential. The prospects for the use of probiotics, prebiotics and postbiotics in preparations, including a new generation of probiotic strains, are shown. The effectiveness of probiotic products for restoring the microflora of the oral cavity, intestines and vagina in various dosage forms was assessed: hydrogels, capsules and tablets.

Conclusions. Functional products of probiotic and postbiotic origin have antiviral, antibacterial and antitumor activity. Probiotics are effective and safe, have high therapeutic potential for the prevention and treatment of diseases of various etiologies. Various dosage forms of probiotics are highly effective for restoring the microbiome of the human body. The prospects for the use of various probiotic strains, including a new generation of microorganisms, are discussed

Author Biographies

Olga Bliznjuk, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Head of Department

Department of Biotechnology, Biophysics and Analytical Chemistry

Igor Ryshchenko, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Director

Educational and Scientific Institute of Chemical Technology and Engineering

Nataliia Masalitina , National Technical University «Kharkiv Polytechnic Institute»

PhD, Associate Professor

Department of Biotechnology, Biophysics and Analytical Chemistry

Daria Pylypenko, State Biotechnological University

PhD

Department of Biotechnology, Molecular Biology and Aquatic Bioresources

Yuriy Krasnopolsky, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Pharmaceutical Sciences, Professor

Department of Biotechnology, Biophisic and Analytical Chemistry

References

  1. Baral, K. C., Bajracharya, R., Lee, S. H., Han, H.-K. (2021). Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. International Journal of Nanomedicine, 16, 7535–7556. https://doi.org/10.2147/ijn.s337427
  2. Mei, Z., Li, D. (2022). The role of probiotics in vaginal health. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.963868
  3. Chugh, P., Dutt, R., Sharma, A., Bhagat, N., Dhar, M. S. (2020). A critical appraisal of the effects of probiotics on oral health. Journal of Functional Foods, 70, 103985. https://doi.org/10.1016/j.jff.2020.103985
  4. Wang, G., Chen, Y., Xia, Y., Song, X., Ai, L. (2022). Characteristics of Probiotic Preparations and Their Applications. Foods, 11 (16), 2472. https://doi.org/10.3390/foods11162472
  5. Hathi, Z., Mettu, S., Priya, A., Athukoralalage, S., Lam, T. N., Choudhury, N. R. et al. (2021). Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives. Biochemical Engineering Journal, 176, 108199. https://doi.org/10.1016/j.bej.2021.108199
  6. Vandenplas, Y., Huys, G., Daube, G. (2015). Probiotics: an update. Jornal de Pediatria, 91 (1), 6–21. https://doi.org/10.1016/j.jped.2014.08.005
  7. Aleman, R. S., Yadav, A. (2023). Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Applied Microbiology, 4 (1), 47–69. https://doi.org/10.3390/applmicrobiol4010004
  8. Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12 (1), 184. https://doi.org/10.3390/cells12010184
  9. Liu, Y., Wang, J., Wu, C. (2022). Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.634897
  10. Liu, Y., Alookaran, J. J., Rhoads, J. M. (2018). Probiotics in Autoimmune and Inflammatory Disorders. Nutrients, 10 (10), 1537. https://doi.org/10.3390/nu10101537
  11. Sil, M., Mitra, S., Goswami, A. (2023). Probiotics and immunity: An overview. Viral, Parasitic, Bacterial, and Fungal Infections. Academic Press, 847–861. https://doi.org/10.1016/b978-0-323-85730-7.00007-2
  12. Ansari, A., Son, D., Hur, Y. M., Park, S., You, Y.-A., Kim, S. M. et al. (2023). Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients, 15 (8), 1862. https://doi.org/10.3390/nu15081862
  13. Khyzhniak, O., Krasnopolskyi, Yu. (2013). Biotekhnolohichni aspekty otrymannia kompleksnoho preparatu yakii mistyt rizni shtamy pro biotychnykh kultur. Visnyk NTU «KhPI», 978 (4), 113–120.
  14. Urrutia-Baca, V. H., Hernández-Hernández, S. N., Martínez, L. M., Dávila-Vega, J. P., Chuck-Hernández, C. (2023). The Role of Probiotics in Dairy Foods and Strategies to Evaluate Their Functional Modifications. Food Reviews International, 40 (1), 434–456. https://doi.org/10.1080/87559129.2023.2172426
  15. Momin, E. S., Khan, A. A., Kashyap, T., Pervaiz, M. A., Akram, A., Mannan, V. et al. (2023). The Effects of Probiotics on Cholesterol Levels in Patients With Metabolic Syndrome: A Systematic Review. Cureus, 15 (4), e37567. https://doi.org/10.7759/cureus.37567
  16. Krasnopolskii, Iu., Borshchevskaia, M. (2009). Farmatcevticheskaia biotekhnologiia: tekhnologiia proizvodstva immunobiologicheskikh preparatov. Kharkov: NTU «KhPI», 352.
  17. Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W. et al. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1216674
  18. Górska, A., Przystupski, D., Niemczura, M. J., Kulbacka, J. (2019). Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy. Current Microbiology, 76 (8), 939–949. https://doi.org/10.1007/s00284-019-01679-8
  19. Śliżewska, K., Markowiak-Kopeć, P., Śliżewska, W. (2020). The Role of Probiotics in Cancer Prevention. Cancers, 13 (1), 20. https://doi.org/10.3390/cancers13010020
  20. Naeem, H., Hassan, H. U., Shahbaz, M., Imran, M., Memon, A. G., Hasnain, A. et al. (2024). Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. Journal of Food Biochemistry, 2024, 1–23. https://doi.org/10.1155/2024/6632209
  21. Krasnopolskyi, Yu., Pylypenko, D. (2020). Farmatsevtychna biotekhnolohiia: biotekhnolohiia vyrobnytstva hotovykh likarskykh form. Kharkiv: «Drukarnia Madryd», 280.
  22. Kiepś, J., Dembczyński, R. (2022). Current Trends in the Production of Probiotic Formulations. Foods, 11 (15), 2330. https://doi.org/10.3390/foods11152330
  23. Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., Ouwehand, A. C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms, 7 (3), 83. https://doi.org/10.3390/microorganisms7030083
  24. Fenster, K. (2022). Impotent Steps in the Probiotic Manufacturing Process. Journal of Probiotics & Health, 10 (3), 260.
  25. Pertsev, I., Dmytriievskyi, D., Rybachuk, V., Khomenko, V., Hudzenko, O., Kotenko, O.; Pertsev, I. (Ed.) (2010). Dopomizhni rechovyny v tekhnolohikh likiv. Kharkiv: Zoloti storinky, 600.
  26. Oluwatosin, S. O., Tai, S. L., Fagan-Endres, M. A. (2022). Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic – towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnology Reports, 33, e00696. https://doi.org/10.1016/j.btre.2021.e00696
  27. Xu, C., Gantumur, M.-A., Sun, J., Guo, J., Ma, J., Jiang, Z. et al. (2024). Design of probiotic delivery systems for targeted release. Food Hydrocolloids, 149, 109588. https://doi.org/10.1016/j.foodhyd.2023.109588
  28. Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S. et al. (2023). A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Applied Food Research, 3 (1), 100248. https://doi.org/10.1016/j.afres.2022.100248
  29. Homayouni Rad, A., Pourjafar, H., Mirzakhani, E. (2023). A comprehensive review of the application of probiotics and postbiotics in oral health. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1120995
  30. Kandur, B., Ugurlu, T., Rayaman, E., Sahbaz, S. (2024). Oral Pharmabiotic Tablet formulations. Journal of Research in Pharmacy, 28 (1), 236–247. https://doi.org/10.29228/jrp.691
  31. Kim, W.-S., Cho, C.-S., Hong, L., Han, G. G., Kil, B. J., Kang, S.-K. et al. (2019). Oral Delivery of Probiotics Using pH-Sensitive Phthalyl Inulin Tablets. Journal of Microbiology and Biotechnology, 29 (2), 200–208. https://doi.org/10.4014/jmb.1811.11021
  32. Venema, K., Verhoeven, J., Verbruggen, S., Espinosa, L., Courau, S. (2019). Probiotic survival during a multi‐layered tablet development as tested in a dynamic, computer‐controlledin vitromodel of the stomach and small intestine (TIM‐1). Letters in Applied Microbiology, 69 (5), 325–332. https://doi.org/10.1111/lam.13211
  33. Hoffmann, A., Fischer, J. T., Daniels, R. (2020). Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Development and Industrial Pharmacy, 46 (11), 1753–1762. https://doi.org/10.1080/03639045.2020.1831013
  34. Bílik, T., Vysloužil, J., Naiserová, M., Muselík, J., Pavelková, M., Mašek, J. et al. (2022). Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems – Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study. Pharmaceutics, 14 (1), 127. https://doi.org/10.3390/pharmaceutics14010127
  35. Fülöpová, N., Chomová, N., Elbl, J., Mudroňová, D., Sivulič, P., Pavloková, S., Franc, A. (2023). Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics. Pharmaceutics, 15 (3), 910. https://doi.org/10.3390/pharmaceutics15030910
  36. Venema, K., Verhoeven, J., Beckman, C., Keller, D. (2020). Survival of a probiotic-containing product using capsule-within-capsule technology in an in vitro model of the stomach and small intestine (TIM-1). Beneficial Microbes, 11 (4), 403–410. https://doi.org/10.3920/bm2019.0209
  37. Cook, M. T., Tzortzis, G., Khutoryanskiy, V. V., Charalampopoulos, D. (2013). Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. Journal of Materials Chemistry B, 1 (1), 52–60. https://doi.org/10.1039/c2tb00126h
  38. Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A. et al. (2020). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12 (11), 2702. https://doi.org/10.3390/polym12112702
  39. Caló, E., Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  40. Kwiecień, I., Kwiecień, M. (2018). Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels, 4 (2), 47. https://doi.org/10.3390/gels4020047
  41. Dafe, A., Etemadi, H., Dilmaghani, A., Mahdavinia, G. R. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536–543. https://doi.org/10.1016/j.ijbiomac.2017.01.060
  42. Praepanitchai, O.-A., Noomhorm, A., Anal, A. K. (2019). Survival and Behavior of Encapsulated Probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy Protein Isolate-Based Hydrogel Beads in Different Processing Conditions (pH and Temperature) and in Pasteurized Mango Juice. BioMed Research International, 2019, 1–8. https://doi.org/10.1155/2019/9768152
  43. Dou, X., Li, G., Wang, S., Shao, D., Wang, D., Deng, X. et al. (2023). Probiotic-loaded calcium alginate/fucoidan hydrogels for promoting oral ulcer healing. International Journal of Biological Macromolecules, 244, 125273. https://doi.org/10.1016/j.ijbiomac.2023.125273
  44. Reddy, M. S. B., Ponnamma, D., Choudhary, R., Sadasivuni, K. K. (2021). A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 13 (7), 1105. https://doi.org/10.3390/polym13071105
  45. Corona-Escalera, A. F., Tinajero-Díaz, E., García-Reyes, R. A., Luna-Bárcenas, G., Seyfoddin, A., Padilla-de la Rosa, J. D. et al. (2022). Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics, 14 (12), 2759. https://doi.org/10.3390/pharmaceutics14122759
  46. Yasmin, R., Shah, M., Khan, S. A., Ali, R. (2017). Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 6 (2), 191–207. https://doi.org/10.1515/ntrev-2016-0009
  47. Tao, S., Zhang, S., Wei, K., Maniura‐Weber, K., Li, Z., Ren, Q. (2024). An Injectable Living Hydrogel with Embedded Probiotics as a Novel Strategy for Combating Multifaceted Pathogen Wound Infections. Advanced Healthcare Materials, 13 (27). https://doi.org/10.1002/adhm.202400921
  48. Kuhn, T., Aljohmani, A., Frank, N., Zielke, L., Mehanny, M., Laschke, M. W. et al. (2024). A cell-free, biomimetic hydrogel based on probiotic membrane vesicles ameliorates wound healing. Journal of Controlled Release, 365, 969–980. https://doi.org/10.1016/j.jconrel.2023.12.011
  49. Krasnopolskyi, Yu. M., Pylypenko, D. M. (2023). Stvorennia system dostavky antyheniv ta likiv na osnovi shtuchnykh i pryrodnykh lipidnykh nanochastynok: liposomy ta ekzosomy. Kharkiv: Drukarnia Madryd, 179.
  50. Liu, P., Lu, Y., Li, R., Chen, X. (2023). Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1153894
  51. Kerry-Barnard, S., Zhou, L., Phillips, L., Furegato, M., Witney, A. A., Sadiq, S. T., Oakeshott, P. (2022). Vaginal microbiota in ethnically diverse young women who did or did not develop pelvic inflammatory disease: community-based prospective study. Sexually Transmitted Infections, 98 (7), 503–509. https://doi.org/10.1136/sextrans-2021-055260
  52. Spacova, I., O’Neill, C., Lebeer, S. (2020). Lacticaseibacillus rhamnosus GG inhibits infection of human keratinocytes by Staphylococcus aureus through mechanisms involving cell surface molecules and pH reduction. Beneficial Microbes, 11 (7), 703–716. https://doi.org/10.3920/bm2020.0075
  53. Zawistowska-Rojek, A., Kośmider, A., Stępień, K., Tyski, S. (2022). Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Archives of Microbiology, 204 (5). https://doi.org/10.1007/s00203-022-02889-8
  54. Sousa, D. N., Gaspar, C., Rolo, J., Donders, G. G. G., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, R., Palmeira-de-Oliveira, A. (2023). Assessment of Live Lactobacilli Recovery from Probiotic Products for Vaginal Application. Applied Microbiology, 3 (4), 1195–1203. https://doi.org/10.3390/applmicrobiol3040082
  55. Borges, S., Silva, J., Teixeira, P. (2013). The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 289 (3), 479–489. https://doi.org/10.1007/s00404-013-3064-9
  56. Abdolalipour, E., Mahooti, M., Salehzadeh, A., Torabi, A., Mohebbi, S. R., Gorji, A., Ghaemi, A. (2020). Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microbial Pathogenesis, 145, 104207. https://doi.org/10.1016/j.micpath.2020.104207
  57. Wei, G., Liu, Q., Wang, X., Zhou, Z., Zhao, X., Zhou, W. et al. (2023). A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Science Advances, 9 (20). https://doi.org/10.1126/sciadv.adg0949
  58. Li, X., Wang, H., Du, X., Yu, W., Jiang, J., Geng, Y. et al. (2017). Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin. Oncology Reports, 38 (3), 1561–1568. https://doi.org/10.3892/or.2017.5791
  59. Kandati, K., Belagal, P., Nannepaga, J. S., Viswanath, B. (2022). Role of probiotics in the management of cervical cancer: An update. Clinical Nutrition ESPEN, 48, 5–16. https://doi.org/10.1016/j.clnesp.2022.02.017
  60. Sun, Q., Yin, S., He, Y., Cao, Y., Jiang, C. (2023). Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials, 13 (15), 2185. https://doi.org/10.3390/nano13152185
  61. Dudek-Wicher, R., Junka, A., Paleczny, J., Bartoszewicz, M. (2020). Clinical Trials of Probiotic Strains in Selected Disease Entities. International Journal of Microbiology, 2020, 1–8. https://doi.org/10.1155/2020/8854119
  62. Troge, A., Scheppach, W., Schroeder, B. O., Rund, S. A., Heuner, K., Wehkamp, J. et al. (2012). More than a marine propeller – the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus. International Journal of Medical Microbiology, 302 (7-8), 304–314. https://doi.org/10.1016/j.ijmm.2012.09.004
  63. Cordonnier, C., Thévenot, J., Etienne-Mesmin, L., Denis, S., Alric, M., Livrelli, V., Blanquet-Diot, S. (2015). Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms, 3 (4), 725–745. https://doi.org/10.3390/microorganisms3040725
  64. Krasnopolskyi, Yu. M., Pylypenko, D. M. (2022). Farmatsevtychna biotekhnolohiia: sohodennia ta maibutnie. Kharkiv: TOV «Drukarnia Madryd», 151.
  65. Ma, J., Lyu, Y., Liu, X., Jia, X., Cui, F., Wu, X. et al. (2022). Engineered probiotics. Microbial Cell Factories, 21 (1). https://doi.org/10.1186/s12934-022-01799-0
  66. Drolia, R., Amalaradjou, M. A. R., Ryan, V., Tenguria, S., Liu, D., Bai, X. et al. (2020). Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nature Communications, 11 (1). https://doi.org/10.1038/s41467-020-20200-5
  67. Sorokulova, I. B. (1998). Izuchenie bezopasnosti ireaktogennosti novogo probiotika subali-na dlia dobrovoltcev. Mikrobiolohichnyi zhurnal, 60 (1), 43–46.
  68. Gurbatri, C. R., Lia, I., Vincent, R., Coker, C., Castro, S., Treuting, P. M. et al. (2020). Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 12 (530). https://doi.org/10.1126/scitranslmed.aax0876
  69. Seo, E., Weibel, S., Wehkamp, J., Oelschlaeger, T. A. (2012). Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. International Journal of Medical Microbiology, 302 (6), 276–287. https://doi.org/10.1016/j.ijmm.2012.05.002
  70. Mao, N., Cubillos-Ruiz, A., Cameron, D. E., Collins, J. J. (2018). Probiotic strains detect and suppress cholera in mice. Science Translational Medicine, 10 (445). https://doi.org/10.1126/scitranslmed.aao2586
  71. Laguna, J. G., Freitas, A. dos S., Barroso, F. A. L., De Jesus, L. C. L., De Vasconcelos, O. A. G. G., Quaresma, L. S. et al. (2024). Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1309160
  72. Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., Anandharamakrishnan, C. (2021). Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics and Antimicrobial Proteins, 14 (1), 15–48. https://doi.org/10.1007/s12602-021-09791-7
  73. Romero-Luna, H. E., Hernández-Mendoza, A., González-Córdova, A. F., Peredo-Lovillo, A. (2022). Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chemistry: X, 13, 100196. https://doi.org/10.1016/j.fochx.2021.100196
  74. Borrero, J., Chen, Y., Dunny, G. M., Kaznessis, Y. N. (2014). Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci. ACS Synthetic Biology, 4 (3), 299–306. https://doi.org/10.1021/sb500090b
  75. Hwang, I. Y., Koh, E., Wong, A., March, J. C., Bentley, W. E., Lee, Y. S., Chang, M. W. (2017). Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nature Communications, 8 (1). https://doi.org/10.1038/ncomms15028
  76. Torres-Sánchez, A., Ruiz-Rodríguez, A., Ortiz, P., Moreno, M. A., Ampatzoglou, A., Gruszecka-Kosowska, A. et al. (2022). Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. International Journal of Molecular Sciences, 23 (21), 12917. https://doi.org/10.3390/ijms232112917
  77. Kumari, M., Singh, P., Nataraj, B. H., Kokkiligadda, A., Naithani, H., Azmal Ali, S. et al. (2021). Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 150, 110716. https://doi.org/10.1016/j.foodres.2021.110716
  78. Abouelela, M. E., Helmy, Y. A. (2024). Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms, 12 (3), 430. https://doi.org/10.3390/microorganisms12030430
  79. Elzinga, J., Narimatsu, Y., de Haan, N., Clausen, H., de Vos, W. M., Tytgat, H. L. P. (2024). Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nature Communications, 15 (1). https://doi.org/10.1038/s41467-024-48770-8
  80. Rangarajan, A. A., Chia, H. E., Azaldegui, C. A., Olszewski, M. H., Pereira, G. V., Koropatkin, N. M., Biteen, J. S. (2022). Ruminococcus bromii enables the growth of proximal Bacteroides thetaiotaomicron by releasing glucose during starch degradation. Microbiology, 168 (4). https://doi.org/10.1099/mic.0.001180
  81. Nie, K., Ma, K., Luo, W., Shen, Z., Yang, Z., Xiao, M., Tong, T., Yang, Y., Wang, X. (2021). Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.757718
  82. Kang, X., Liu, C., Ding, Y., Ni, Y., Ji, F., Lau, H. C. H. et al. (2023). Roseburia intestinalisgenerated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+T cells. Gut, 72 (11), 2112–2122. https://doi.org/10.1136/gutjnl-2023-330291
  83. Tsilingiri, K., Barbosa, T., Penna, G., Caprioli, F., Sonzogni, A., Viale, G., & Rescigno, M. (2012). Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut, 61(7), 1007–1015. https://doi.org/10.1136/gutjnl-2011-300971
  84. Mishra, B., Mishra, A. K., Mohanta, Y. K., Yadavalli, R., Agrawal, D. C., Reddy, H. P. et al. (2024). Postbiotics: the new horizons of microbial functional bioactive compounds in food preservation and security. Food Production, Processing and Nutrition, 6 (1). https://doi.org/10.1186/s43014-023-00200-w
  85. Ma, L., Tu, H., Chen, T. (2023). Postbiotics in Human Health: A Narrative Review. Nutrients, 15 (2), 291. https://doi.org/10.3390/nu15020291
  86. Hijová, E. (2024). Postbiotics as Metabolites and Their Biotherapeutic Potential. International Journal of Molecular Sciences, 25 (10), 5441. https://doi.org/10.3390/ijms25105441
  87. Rajam, R., Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11 (1). https://doi.org/10.1186/s43088-022-00228-w
  88. Liu, H., Xie, M., Nie, S. (2020). Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Frontiers, 1 (1), 45–59. Portico. https://doi.org/10.1002/fft2.11
  89. Zhou, C., Zou, Y., Xu, R., Han, X., Xiang, Z., Guo, H. et al. (2023). Metal-phenolic self-assembly shielded probiotics in hydrogel reinforced wound healing with antibiotic treatment. Materials Horizons, 10 (8), 3114–3123. https://doi.org/10.1039/d3mh00033h
  90. Doar, N. W., Samuthiram, S. D. (2023). Qualitative Analysis of the Efficacy of Probiotic Strains in the Prevention of Antibiotic-Associated Diarrhea. Cureus, 15 (6), e40261. https://doi.org/10.7759/cureus.40261
  91. Agriopoulou, S., Tarapoulouzi, M., Varzakas, T., Jafari, S. M. (2023). Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms, 11 (12), 2896. https://doi.org/10.3390/microorganisms11122896
  92. Stavropoulou, E., Bezirtzoglou, E. (2020). Probiotics in Medicine: A Long Debate. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.02192
Analysis of the current status of probiotic drug development

Downloads

Published

2025-02-28

How to Cite

Bliznjuk, O., Ryshchenko, I., Masalitina , N., Pylypenko, D., & Krasnopolsky, Y. (2025). Analysis of the current status of probiotic drug development. ScienceRise: Pharmaceutical Science, (1 (53), 14–25. https://doi.org/10.15587/2519-4852.2025.322767

Issue

Section

Pharmaceutical Science