Study of the chemical components of CO2 extracts from the underground part of Ferula Asafoetida L.

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.323987

Keywords:

medicinal plants, plant raw materials, Ferula asafoetida L., CO2 extract, chemical compounds, fatty acids, amino acids, GC-MS

Abstract

The aim of this study was to determine the chemical composition of the CO2 extract obtained from the underground part of Ferula asafoetida L., a plant widely used in traditional Kazakhstani medicine, with a particular focus on the amino acid and fatty acid profiles.

Materials and methods. The plant material was collected in accordance with current Good Agricultural and Collection Practice (GACP) guidelines and underwent thorough pre-processing. A subcritical CO2 extraction method was applied to preserve thermolabile and volatile components while minimizing solvent residues. Chemical analysis was performed using GC-MS, and the amino acid and fatty acid profiles were determined by gas-liquid chromatography (GLC) based on standardized methods.

Results. The resulting CO₂ extract had a high proportion of unsaturated fatty acids (90.2 %), primarily oleic acid (46.1 %) and linoleic acid (43.0 %), along with a complete set of 20 amino acids, including 25.92 % essential amino acids. The major bioactive compounds identified were 9,12-Octadecadienoic acid, ethyl ester (18.61 %) and ethyl oleate (13.18 %), which have potential antioxidant and anti-inflammatory properties. These findings suggest the extract’s suitability for pharmaceutical and nutraceutical applications.

Conclusions. Although the extract shows promising potential for pharmaceutical applications, further verification through comprehensive pharmacological studies is necessary

Author Biographies

Serzhan Mombekov, S. D. Asfendiyarov Kazakh National Medical University

PhD, Associate Professor

School of Pharmacy

Nurgali Rakhymbayev, S. D. Asfendiyarov Kazakh National Medical University

PhD

School of Pharmacy

Kairat Zhakipbekov, S. D. Asfendiyarov Kazakh National Medical University

PhD, Associate Professor

School of Pharmacy

Bayan Sagindykova, South Kazakhstan Medical Academy

Doctor of Pharmaceutical Sciences, Professor

Faculty of Pharmacy

Symbat Akhatova, I. Altynsarin Arkalyk Pedagogical Institute

Master of Natural Sciences

Faculty of Natural Science and Informatization

Maral Amirov, I. Altynsarin Arkalyk Pedagogical Institute

Master of Natural sciences

Faculty of Natural Science and Informatization

Iryna Zhuravel, National University of Pharmacy

Doctor of Chemical Sciences, Professor

Department of Pharmaceutical Technology, Standardization and Certification of Medicines

Akmaral Nurmahanova, Al Farabi Kazakh National University

PhD, Associate Professor

Faculty of Biology and Biotechnology

Murat Ashirov, S. D. Asfendiyarov Kazakh National Medical University

Lecturer

School of Pharmacy

Arailym Daulbayeva, S. D. Asfendiyarov Kazakh National Medical University

PhD student

School of Pharmacy

Sergii Kolisnyk, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of General Chemistry

References

  1. Egamberdieva, D., Mamedov, N., Ovidi, E., Tiezzi, A., Craker, L. (2017). Phytochemical and Pharmacological Properties of Medicinal Plants from Uzbekistan: A Review. Journal of Medicinally Active Plants, 5 (1-4), 59–75. https://doi.org/10.7275/R5571969
  2. Fik-Jaskółka, M., Mittova, V., Motsonelidze, C., Vakhania, M., Vicidomini, C., Roviello, G. N. (2024). Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics, 13 (6), 487. https://doi.org/10.3390/antibiotics13060487
  3. Alqahtani, A. S., Ullah, R., Shahat, A. A. (2022). Bioactive Constituents and Toxicological Evaluation of Selected Antidiabetic Medicinal Plants of Saudi Arabia. Evidence-Based Complementary and Alternative Medicine, 2022, 1–23. https://doi.org/10.1155/2022/7123521
  4. Nurmahanova, A., Ibisheva, N., Kurbatova, N., Atabayeva, S., Seilkhan, A., Tynybekov, B. et al. (2023). Comparative Anatomical and Morphological Study of Three Populations of Salvia aethiopis L. Growing in the Southern Balkhash Region. Journal of Ecological Engineering, 24 (9), 27–38. https://doi.org/10.12911/22998993/168252
  5. Turgumbayeva, A. (2023). A review on the medicinal plant echinops ritro species: phytochemistry and biological activity. Farmacia, 71 (3), 455–462. https://doi.org/10.31925/farmacia.2023.3.2
  6. Yaqoob, U., Nawchoo, I. A. (2016). Distribution and taxonomy of Ferula L.: A review. Research & Reviews: Journal of Botany, 5 (3), 15–23.
  7. Mombekov, S., Orazbekov, Y., Sadykova, N., Kozhamzharova, A., Sharipova, S., Makhatov, Z., Pushkarskaya, N. (2024). Development of antifungal gel, composition and technology based on pomiferin metabolite isolated from fruits of Maclura aurantiaca growing in Kazakhstan. ScienceRise: Pharmaceutical Science, 1 (47), 79–85. https://doi.org/10.15587/2519-4852.2024.299230
  8. Hosseinzadeh, N., Shomali, T., Hosseinzadeh, S., Raouf Fard, F., Jalaei, J., Fazeli, M. (2020). Cytotoxic activity of Ferula persica gum essential oil on murine colon carcinoma (CT26) and Vero cell lines. Journal of Essential Oil Research, 32 (2), 169–177. https://doi.org/10.1080/10412905.2020.1729880
  9. Kablanova, D. A., Mirzadinov, R. A., Akymbekova, L. D. (2020). Reserves of Ferula assa-foetida in Kazakhstan for medical purposes. European Science, 6 (55), 24–29.
  10. Sabzehzari, M., Naghavi, M. R., Bozari, M., Orafai, H. M., Johnston, T. P., Sahebkar, A. (2020). Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review. Mini-Reviews in Medicinal Chemistry, 20 (13), 1233–1257. https://doi.org/10.2174/1389557520666200505125618
  11. Nirgunkar, G., Bajad, M., Deshmukh, P., Gawande, A., Jadhao, K. (2023). (2023). Review on Drug Asafoetida Traditional uses and Pharmacological Activities. International Journal of Advanced Research in Science, Communication and Technology, 2, 260–266. https://doi.org/10.48175/ijarsct-14334
  12. Kumar, R., Yadav, N., Rana, A., Chauhan, R., Singh, S., Kumar, D. et al. (2024). Ferula assa-foetida L., an important Central and South Asian traditional spice and medicinal herb: A comprehensive review. Journal of Applied Research on Medicinal and Aromatic Plants, 41, 100548. https://doi.org/10.1016/j.jarmap.2024.100548
  13. Alijaniha, F., Emadi, F., Naseri, M., Bahaeddin, Z., Dehparvar, N. (2023). Some physicochemical and phytochemical characteristics of Iranian Ferula assa-foetida L. oleo-gum resin. Afghanistan Research Journal – Natural Science, 22 (85), 89–97. https://doi.org/10.61186/jmp.22.85.89
  14. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants (2003). Available at: https://www.researchgate.net/publication/43985459_WHO_Guidelines_on_Good_Agricultural_and_Collection_Practices_GACP_for_Medicinal_Plants
  15. Rakhymbayev, N., Datkhayev, U., Sagindykova, B., Myrzakozha, D., Zhakipbekov, K., Iskakbayeva, Z. (2023). Component composition and antimicrobial activity of subcritical CO2 extract of Ferula asafoetida L., growing in the territory of Kazakhstan. ScienceRise: Pharmaceutical Science, 2 (42), 82–91. https://doi.org/10.15587/2519-4852.2023.266654
  16. Guan, M., Xu, X., Tang, X., Li, Y. (2022). Optimization of supercritical CO2 extraction by response surface methodology, composition analysis and economic evaluation of bamboo green wax. Journal of Cleaner Production, 330, 129906. https://doi.org/10.1016/j.jclepro.2021.129906
  17. NIST/EPA/NIH Mass Spectral Library, Version NIST 02 (2002). National Institute of Standards and Technology. Hoboken: J. Wiley & Sons. Available at: https://search.worldcat.org/title/nistepanih-mass-spectral-library-searchanalysis-programs-nist-02-update/oclc/53113051
  18. Wiley Registry of Mass Spectral Data, 7th Edition. (2008). John Wiley & Sons, Inc.
  19. Moldabergenova, A. K., Litvinenko, Yu. A., Akhtayeva, N. Z., Kiekbayeva, I. N., Ross, S. A. (2016). Amino and fatty acid composition of the aerial parts of Еchinops albicaulis, growing in Kazakhstan. International Journal of Biology and Chemistry, 9 (2), 32–35. https://doi.org/10.26577/2218-7979-2016-9-2-32-35
  20. Bazaraliyeva, A., Turgumbayeva, A., Kartbayeva, E., Kalykova, A., Mombekov, S., Akhelova, A. et al. (2024). GC-MS based characterization, antimicrobial activity of garlic CO₂ subcritical extract (Allium sativum). Farmacia, 72 (5), 1182–1190. https://doi.org/10.31925/farmacia.2024.5.21
  21. El-Helw, E. A., Alzahrani, A. Y., Ramadan, S. K. (2024). Synthesis and Antimicrobial Activity of Thiophene-Based Heterocycles Derived from Thiophene-2-Carbohydrazide. Future Medicinal Chemistry, 16 (5), 439–451. https://doi.org/10.4155/fmc-2023-0304
  22. Diab, T. A., Donia, T., Saad-Allah, K. M. (2021). Characterization, antioxidant, and cytotoxic effects of some Egyptian wild plant extracts. Beni-Suef University Journal of Basic and Applied Sciences, 10 (1). https://doi.org/10.1186/s43088-021-00103-0
  23. Hawas, U. W., El-Kassem, L. T. A., Shaher, F. M., Al-Farawati, R., Ghandourah, M. (2022). Phytochemical Compositions of Some Red Sea Halophyte Plants with Antioxidant and Anticancer Potentials. Molecules, 27 (11), 3415. https://doi.org/10.3390/molecules27113415
  24. Hawthorne, S. B., Krieger, M. S., Miller, D. J. (1988). Analysis of flavor and fragrance compounds using supercritical fluid extraction coupled with gas chromatography. Analytical Chemistry, 60 (5), 472–477. https://doi.org/10.1021/ac00156a020
  25. Bleve, M., Ciurlia, L., Erroi, E., Lionetto, G., Longo, L., Rescio, L. et al. (2008). An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Separation and Purification Technology, 64 (2), 192–197. https://doi.org/10.1016/j.seppur.2008.10.012
  26. On, J. O., Bassey, G. A., Agba, M.-I. O., Markson, A.-A. A. (2021). Amino Acids Composition of Some Wild Edible Mushrooms from Southern Cross River State, Nigeria. Asian Journal of Biology, 12 (2), 24–32. https://doi.org/10.9734/ajob/2021/v12i230159
  27. Ling, Z.-N., Jiang, Y.-F., Ru, J.-N., Lu, J.-H., Ding, B., Wu, J. (2023). Amino acid metabolism in health and disease. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01569-3
  28. Nagy, K., Tiuca, I.-D. (2017). Importance of Fatty Acids in Physiopathology of Human Body. Fatty Acids. InTech. https://doi.org/10.5772/67407
  29. Ashirov, M. Z., Datkhayev, U. M., Myrzakozha, D. A., Sato, H., Zhakipbekov, K. S., Rakhymbayev, N. A., Sadykov, B. N. (2020). Study of Cold-Pressed Tobacco Seed Oil Properties by Gas Chromatography Method. The Scientific World Journal, 2020, 1–5. https://doi.org/10.1155/2020/8852724
  30. Britannica, T. (2024). Fatty acid. Encyclopedia Britannica. Available at: https://www.britannica.com/science/fatty-acid
  31. Kantureyeva, A., Ustenova, G., Zvonar Pobirk, A., Mombekov, S., Koilybayeva, M., Amirkhanova, A. et al. (2024). Ceratocarpus arenarius: Botanical Characteristics, Proximate, Mineral Composition, and Cytotoxic Activity. Molecules, 29 (2), 384. https://doi.org/10.3390/molecules29020384
  32. Mombekov, S., Datkhayev, U., Kalamkul, D., Kozhamzharova, A., Baidullayeva, A., Assel, M. et al. (2024). Study of the chemical components of CO2 extracts from the fruits of Sorbus aucuparia L. ScienceRise: Pharmaceutical Science, 2 (48), 83–89. https://doi.org/10.15587/2519-4852.2024.303000
Study of the chemical components of CO2 extracts from the underground part of Ferula Asafoetida L.

Downloads

Published

2025-02-28

How to Cite

Mombekov, S., Rakhymbayev, N., Zhakipbekov, K., Sagindykova, B., Akhatova, S., Amirov, M., Zhuravel, I., Nurmahanova, A., Ashirov, M., Daulbayeva, A., & Kolisnyk, S. (2025). Study of the chemical components of CO2 extracts from the underground part of Ferula Asafoetida L. ScienceRise: Pharmaceutical Science, (1 (53), 115–122. https://doi.org/10.15587/2519-4852.2025.323987

Issue

Section

Pharmaceutical Science