Structural-fragment analysis of active pharmaceutical ingredients of antiepileptic drugs in group N03A of the Ukrainian pharmaceutical market and their pharmacophoric features

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.337842

Keywords:

antiepileptic drugs, APIs, FBDD, pharmacophore, structural clustering, ADME, Tanimoto similarity, NaV, GABA-A, SV2A, carbonic anhydrase, Ukrainian pharmaceutical market

Abstract

Epilepsy affects approximately 50 million people globally, with one-third of patients remaining resistant to available therapies, emphasizing the need for new and safer anticonvulsants. Although fragment-based and in silico approaches are effective for drug discovery, a unified structural analysis of antiepileptic APIs on the Ukrainian market remains unexplored.

The aim of the study. To analyze 16 antiepileptic APIs registered in Ukraine using fragment-based methods to identify shared pharmacophoric features, structural similarities, and correlations between structural fragments and ADME properties (including drug-likeness patterns for structure-property insights) as a basis for rational anticonvulsant design.

Materials and methods. Data were collected from the State Register of Medicinal Products of Ukraine and Compendium (June 2025) using ATC code N03A. Literature review used PubMed, PubChem, DrugBank, Scopus, Elicit, and ResearchRabbit. Structural analysis was performed using Python libraries.

Results. The study classified 16 active pharmaceutical ingredients (APIs) into structural clusters (e.g., barbiturates, dibenzazepines, amino acid derivatives) based on Tanimoto similarity coefficients and ECFP4 molecular fingerprints. Commonly identified fragments included carbonyl, amino, amide, carboxyl groups, and aromatic rings. ADME profiling revealed consistent relationships between structural features and physicochemical properties: high lipophilicity in benzodiazepines and good absorption characteristics in gabapentinoids. This analysis was performed to identify structure-dependent ADME patterns, providing a basis for fragment-based design of novel anticonvulsants.

Conclusions. Despite chemical diversity, the analyzed APIs exhibit shared spatial pharmacophore arrangements with recurring groups supporting activity at NaV, CaV, GABA-A, SV2A, and GABA-T. ADME profiling and structure–property correlations provide a basis for pharmacophore fragment modelling and CNS-oriented fragment-library design to enable rational discovery. Future design should leverage the identified pharmacophoric fragments to build multitarget molecules within a CNS ADME window

Supporting Agency

  • The study was carried out within the framework of the research project “ Search for novel potential anticonvulsant agents for the treatment of post-traumatic epilepsy in military personnel and the civilian population”, funded by the Ministry of Education and Science of Ukraine (Project registration number: 0125U001794).

Author Biographies

Maryna Stasevych, Lviv Polytechnic National University

Doctor of Chemical Sciences, Professor

Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology

Mykhailo Hoidyk, Danylo Halytsky Lviv National Medical University

PhD Student

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Olexandra Roman, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of General, Bioinorganic, Physicocolloid Chemistry

Roksolana Konechna, Lviv Polytechnic National University

PhD, Associate Professor

Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology

Andriy Karkhut, Lviv Polytechnic National University

PhD, Associate Professor

Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology

Andrii Lozynskyi, Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Sviatoslav Polovkovych, Lviv Polytechnic National University

Doctor of Chemical Sciences, Professor

Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology

Roman Lesyk, Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

References

  1. Epilepsy (2024). World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/epilepsy
  2. Sinha, S., Dubey, M., Misal, S., Alavala, R. R., C. S., R.; Rao G., S. K., Alavala, R. R. (Eds.) (2025). Computational Analyses of the Mechanism of Action of Antiepileptic Agents. Applications of Computational Tools in Drug Design and Development. Singapore: Springer, 885–933. https://doi.org/10.1007/978-981-96-4154-3_24
  3. Wu, Z., Chen, S., Wang, Y., Li, F., Xu, H., Li, M. et al. (2024). Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. International Journal of Surgery, 110 (6), 3848–3878. https://doi.org/10.1097/js9.0000000000001289
  4. Karaküçük-İyidoğan, A., Başaran, E., Tatar-Yılmaz, G., Oruç-Emre, E. E. (2024). Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs). Bioorganic Chemistry, 151, 107662. https://doi.org/10.1016/j.bioorg.2024.107662
  5. State Register of Medicinal Products of Ukraine. Available at: http://www.drlz.com.ua
  6. Compendium. Available at: https://compendium.com.ua
  7. Tsyvunin, V., Shtrygol’, S., Havrylov, I., Shtrygol’, D. (2021). Low-dose digoxin enhances the anticonvulsive potential of carbamazepine and lamotrigine in chemo-induced seizures with different neurochemical mechanisms. ScienceRise: Pharmaceutical Science, 6 (34), 58–65. https://doi.org/10.15587/2519-4852.2021.249375
  8. Tsyvunin, V., Shtrygol’, S., Prokopenko, Y., Georgiyants, V., Blyznyuk, N. (2016). Influence of dry herbal extracts on pentylenetetrazole-induced seizures in mice: screening results and relationship “chemical composition – pharmacological effect.” ScienceRise: Pharmaceutical Science, 1 (1), 18–28. https://doi.org/10.15587/2519-4852.2016.71518
  9. Tsyvunin, V., Shtrygol’, S., Havrylov, I., Shtrygol’, D., Reus, A. (2022). SGLT-2 inhibitors as potential anticonvulsants: empagliflozin, but not dapagliflozin, renders a pronounced effect and potentiates the sodium valproate activity in pentylenetetrazole-induced seizures. ScienceRise: Pharmaceutical Science, 5 (39), 83–90. https://doi.org/10.15587/2519-4852.2022.266065
  10. Kamiński, K., Zagaja, M., Łuszczki, J. J., Rapacz, A., Andres-Mach, M., Latacz, G., Kieć-Kononowicz, K. (2015). Design, Synthesis, and Anticonvulsant Activity of New Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)propanamides and 2-(2,5-Dioxopyrrolidin-1-yl)butanamides. Journal of Medicinal Chemistry, 58 (13), 5274–5286. https://doi.org/10.1021/acs.jmedchem.5b00578
  11. Nath Pandeya, S. (2012). Semicarbazone – a versatile therapeutic pharmacophore for fragment based anticonvulsant drug design. Acta Pharmaceutica, 62 (3), 263–286. https://doi.org/10.2478/v10007-012-0030-1
  12. Krasowski, M. D., McMillin, G. A. (2014). Advances in anti-epileptic drug testing. Clinica Chimica Acta, 436, 224–236. https://doi.org/10.1016/j.cca.2014.06.002
  13. Serdaroğlu, G., Ortiz, J. V. (2016). Ab Initio Calculations on some Antiepileptic Drugs such as Phenytoin, Phenbarbital, Ethosuximide and Carbamazepine. Structural Chemistry, 28 (4), 957–964. https://doi.org/10.1007/s11224-016-0898-3
  14. Ugale, V. G., Bari, S. B., Khadse, S. C., Reddy, P. N., Bonde, C. G., Chaudhari, P. J. (2020). Exploring Quinazolinones as Anticonvulsants by Molecular Fragmentation Approach: Structural Optimization, Synthesis and Pharmacological Evaluation Studies. ChemistrySelect, 5 (10), 2902–2912. https://doi.org/10.1002/slct.201904776
  15. Abram, M., Jakubiec, M., Kamiński, K. (2019). Chirality as an Important Factor for the Development of New Antiepileptic Drugs. ChemMedChem, 14 (20), 1744–1761. https://doi.org/10.1002/cmdc.201900367
  16. Kwan, P., Brodie, M. J. (2004). Phenobarbital for the Treatment of Epilepsy in the 21st Century: A Critical Review. Epilepsia, 45 (9), 1141–1149. https://doi.org/10.1111/j.0013-9580.2004.12704.x
  17. Cozanitis, D. A. (2004). One Hundred Years of Barbiturates and Their Saint. Journal of the Royal Society of Medicine, 97 (12), 594–598. https://doi.org/10.1177/014107680409701214
  18. Bialer, M. (2012). How did phenobarbital’s chemical structure affect the development of subsequent antiepileptic drugs (AEDs)? Epilepsia, 53 (s8), 3–11. https://doi.org/10.1111/epi.12024
  19. Murayama, N., Shimada, M., Yamazoe, Y., Sogawa, K., Nakayama, K., Fujii-Kuriyama, Y., Kato, R. (1996). Distinct Effects of Phenobarbital and Its N-Methylated Derivative on Liver Cytochrome P450 Induction. Archives of Biochemistry and Biophysics, 328 (1), 184–192. https://doi.org/10.1006/abbi.1996.0159
  20. Bush, M. T., Sanders, E. (1967). Metabolic Fate of Drugs: Barbiturates and Closely Related Compounds. Annual Review of Pharmacology, 7 (1), 57–76. https://doi.org/10.1146/annurev.pa.07.040167.000421
  21. SanMartin, R., Churruc, F. (2011). Drug Discovery in Epilepsy: A Synthetic Review. Novel Treatment of Epilepsy. https://doi.org/10.5772/24991
  22. Rowe, E. J., Weinswig, M. H. (1964). Synthesis of N-Substituted and N,N′-Disubstituted Benzyl Derivatives of 5,5-Disubstituted Barbiturates. Journal of Pharmaceutical Sciences, 53 (2), 226–227. https://doi.org/10.1002/jps.2600530229
  23. Nims, R. W., Syi, J. L., Wink, D. A., Nelson, V. C., Thomas, P. E., Jones, C. R. et al. (1993). Hepatic cytochrome P450 2B-type induction by ethyl/phenyl-substituted congeners of phenobarbital in the rat. Chemical Research in Toxicology, 6 (2), 180–187. https://doi.org/10.1021/tx00032a007
  24. Vida, J. A., Hooker, M. L., Samour, C. M., Reinhard, J. F. (1973). Anticonvulsants. 4. Metharbital and phenobarbital derivatives. Journal of Medicinal Chemistry, 16 (12), 1378–1381. https://doi.org/10.1021/jm00270a013
  25. Ernst, B., Clark, G., Grundmann, O. (2015). The Physicochemical and Pharmacokinetic Relationships of Barbiturates – From the Past to the Future. Current Pharmaceutical Design, 21 (25), 3681–3691. https://doi.org/10.2174/1381612821666150331131009
  26. Ho, I. K., Harris, R. A. (1981). Mechanism of Action of Barbiturates. Annual Review of Pharmacology and Toxicology, 21 (1), 83–111. https://doi.org/10.1146/annurev.pa.21.040181.000503
  27. Leeb-Lundberg, F., Olsen, R. W. (1982). Interactions of barbiturates of various pharmacological categories with benzodiazepine receptors. Molecular Pharmacology, 21 (2), 320–328. https://doi.org/10.1016/s0026-895x(25)14607-5
  28. Vieira, A. A., Gomes, N. M., Matheus, M. E., Fernandes, P. D., Figueroa-Villar, J. D. (2011). Synthesis and in vivo evaluation of 5-chloro-5-benzobarbiturates as new central nervous system depressants. Journal of the Brazilian Chemical Society, 22 (2), 364–371. https://doi.org/10.1590/s0103-50532011000200024
  29. Jursic, B. S., Neumann, D. M., Bowdy, K. L., Stevens, E. D. (2004). Simple, efficient, high yield syntheses of substituted and unsubstituted 5‐benzoylbarbituric acids, and their corresponding schiff base phenylhydrazones. Journal of Heterocyclic Chemistry, 41 (2), 233–246. https://doi.org/10.1002/jhet.5570410214
  30. Perekhoda, L. (2020). The application of PASS-computer program and molecular docking for the search of new anticonvulsants. Annals of Mechnikov’s Institute, 4, 55–60. Available at: https://journals.uran.ua/ami/article/view/208223
  31. Okujava, V. M., Chankvetadze, B. G., Rukhadze, M. D., Rogava, M. M., Tkesheliadze, N. B. (1991). Use of normal-phase microcolumn high-performance liquid chromatography for the study of hydrolytic stability, metabolic profiling and pharmacokinetics. Journal of Pharmaceutical and Biomedical Analysis, 9 (6), 465–473. https://doi.org/10.1016/0731-7085(91)80248-8
  32. Patocka, J., Wu, Q., Nepovimova, E., Kuca, K. (2020). Phenytoin – An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food and Chemical Toxicology, 142, 111393. https://doi.org/10.1016/j.fct.2020.111393
  33. Poupaert, J. H., Vandervorst, D., Guiot, P., Moustafa, M. M. M., Dumont, P. (1984). Structure-activity relationships of phenytoin-like anticonvulsant drugs. Journal of Medicinal Chemistry, 27 (1), 76–78. https://doi.org/10.1021/jm00367a015
  34. Deodhar, M., Sable, P., Bhosale, A., Juvale, K., Dumbare, R., Sakpal, P. (2009). Synthesis and evaluation of phenytoin derivatives as anticonvulsant agents. Turkish Journal of Chemistry, 33 (3), 367–373. https://doi.org/10.3906/kim-0711-18
  35. Henderson, J. D., Dayton, P. G., Israili, Z. H., Mandell, L. (1981). A nonmetabolized analog of phenytoin. Journal of Medicinal Chemistry, 24 (7), 843–847. https://doi.org/10.1021/jm00139a015
  36. Philip, A. E., Poupaert, J. H., Chevé, G., Muccioli, G., Lambert, D., McCurdy, C. R. (2007). Structure-activity relationship of phenytoinergic antiepileptic drugs related to ameltolide. Medicinal Chemistry Research, 16 (3), 130–135. https://doi.org/10.1007/s00044-007-9016-9
  37. Keppel Hesselink, J. M., Kopsky, D. J. (2017). Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. Journal of Neurology, 264 (8), 1617–1621. https://doi.org/10.1007/s00415-017-8391-5
  38. Pal, R., Singh, K., Khan, S. A., Chawla, P., Kumar, B., Akhtar, M. J. (2021). Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. European Journal of Medicinal Chemistry, 226, 113890. https://doi.org/10.1016/j.ejmech.2021.113890
  39. Loscher, W. (2002). Basic Pharmacology of Valproate. CNS Drugs, 16 (10), 669–694. https://doi.org/10.2165/00023210-200216100-00003
  40. Blaheta, R. A., Cinatl, J. (2002). Anti‐tumor mechanisms of valproate: A novel role for an old drug. Medicinal Research Reviews, 22 (5), 492–511. https://doi.org/10.1002/med.10017
  41. Landmark, C. J., Johannessen, S. I. (2008). Modifications of Antiepileptic Drugs for Improved Tolerability and Efficacy. Perspectives in Medicinal Chemistry, 2. https://doi.org/10.1177/1177391x0800200001
  42. Mishra, M. K., Kukal, S., Paul, P. R., Bora, S., Singh, A., Kukreti, S. et al. (2021). Insights into Structural Modifications of Valproic Acid and Their Pharmacological Profile. Molecules, 27 (1), 104. https://doi.org/10.3390/molecules27010104
  43. Acheampong, A. A. (1985). Quantitative structure-anticonvulsant activity studies of valproic acid analogues. [Doctoral dissertation, University of British Columbia]. Available at: https://doi.org/10.14288/1.0096534
  44. Palaty, J. (1995). Unsaturated analogues of valproic acid: Structure activity relationships and interaction with GABA metabolism. [Doctoral Dissertation; University of British Columbia]. Available at: https://open.library.ubc.ca/collections/ubctheses/831/items/1.0088895
  45. Shields, W. D., Pellock, J. M. (2011). Vigabatrin 35 years later – from mechanism of action to benefit-risk considerations. Acta Neurologica Scandinavica, 124, 1–4. https://doi.org/10.1111/j.1600-0404.2011.01606.x
  46. Zhao, L.-X., Park, J. G., Moon, Y.-S., Basnet, A., Choi, J., Kim, E. et al. (2004). Design, synthesis and anticonvulsive activity of analogs of γ-vinyl GABA. Il Farmaco, 59 (5), 381–388. https://doi.org/10.1016/j.farmac.2004.01.011
  47. Michael, K. B. (2022). Study of long-term visual function and plasma biomarkers in patients with epilepsy receiving Vigabatrin. [Doctoral Dissertation; University of Glasgow]. Available at: https://theses.gla.ac.uk/82953/
  48. Tong, X. (2007). The pharmacokinetics and neuropharmacological action of the new antiepileptic drugs vigabatrin and levetiracetam. [Doctoral Thesis; University of London]. Available at: https://discovery.ucl.ac.uk/id/eprint/1445126/
  49. Guberman, A. (1996). Vigabatrin. Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences Neurologiques, 23 (S2), S13–S17. https://doi.org/10.1017/s0317167100020928
  50. Alrashood, S. T. (2016). Carbamazepine. Profiles of Drug Substances, Excipients and Related Methodology, 133–321. https://doi.org/10.1016/bs.podrm.2015.11.001
  51. McLean, M. J., Schmutz, M., Wamil, A. W., Olpe, H. ‐R., Portet, C., Feldmann, K. F. (1994). Oxcarbazepine: Mechanisms of Action. Epilepsia, 35 (s3), S5–S9. https://doi.org/10.1111/j.1528-1157.1994.tb05949.x
  52. Almeida, L., Soares-da-Silva, P. (2007). Eslicarbazepine Acetate (BIA 2-093). Neurotherapeutics, 4 (1), 88–96. https://doi.org/10.1016/j.nurt.2006.10.005
  53. Gerlach, A. C., Krajewski, J. L. (2010). Antiepileptic Drug Discovery and Development: What Have We Learned and Where Are We Going? Pharmaceuticals, 3 (9), 2884–2899. https://doi.org/10.3390/ph3092884
  54. Das, N., Dhanawat, M., Shrivastava, S. K. (2012). An overview on antiepileptic drugs. Drug discoveries & therapeutics, 6 (4), 178–193. https://doi.org/10.5582/ddt.2012.v6.4.178
  55. Chung, S. S., Kelly, K., Schusse, C. (2011). New and Emerging Treatments for Epilepsy: Review of Clinical Studies of Lacosamide, Eslicarbazepine Acetate, Ezogabine, Rufinamide, Perampanel, and Electrical Stimulation Therapy. Journal of Epilepsy Research, 1 (2), 35–46. https://doi.org/10.14581/jer.11008
  56. Rocamora, R. (2015). A review of the efficacy and safety of eslicarbazepine acetate in the management of partial-onset seizures. Therapeutic Advances in Neurological Disorders, 8 (4), 178–186. https://doi.org/10.1177/1756285615589711
  57. Arzimanoglou, A., Ben‐Menachem, E., Cramer, J., Glauser, T., Seeruthun, R., Harrison, M. (2010). The evolution of antiepileptic drug development and regulation. Epileptic Disorders, 12 (1), 3–15. https://doi.org/10.1684/epd.2010.0303
  58. Macdonald, R. L. (1989). Antiepileptic Drug Actions. Epilepsia, 30 (s1), S19–S28. https://doi.org/10.1111/j.1528-1157.1989.tb05810.x
  59. Wilde, M., Auwärter, V., Moosmann, B. (2021). New psychoactive substances – Designer benzodiazepines. WIREs Forensic Science, 3 (6). https://doi.org/10.1002/wfs2.1416
  60. Batlle Rocafort, E. (2018). Benzodiazepines and derivatives. Overview, analysis and synthesis. Available at: https://core.ac.uk/outputs/158608492/?source=4
  61. Arora, N., Dhiman, P., Kumar, S., Singh, G., Monga, V. (2020). Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorganic Chemistry, 97, 103668. https://doi.org/10.1016/j.bioorg.2020.103668
  62. Teli, S., Teli, P., Soni, S., Sahiba, N., Agarwal, S. (2023). Synthetic aspects of 1,4- and 1,5-benzodiazepines usingo-phenylenediamine: a study of past quinquennial. RSC Advances, 13 (6), 3694–3714. https://doi.org/10.1039/d2ra06045k
  63. Leppik, I. E. (2004). Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure, 13, S5–S9. https://doi.org/10.1016/j.seizure.2004.04.016
  64. Shimizu, M., Uno, H., Ito, T., Masuda, Y., Kurokawa, M. (1996). Research and Development of Zonisamide, a New Type of Antiepileptic Drug. Yakugaku Zasshi, 116 (7), 533–547. https://doi.org/10.1248/yakushi1947.116.7_533
  65. Gidal, B. E., Resnick, T., Smith, M. C., Wheless, J. W. (2024). Zonisamide: A Comprehensive, Updated Review for the Clinician. Neurology. Neurology Clinical Practice, 14 (1). https://doi.org/10.1212/cpj.0000000000200210
  66. Travagin, F., Vladiskovic, C., Giovenzana, G. B., Mantegazza, S., & Razzetti, G. (2024). Improving Zonisamide Manufacturing: Insights into Stereochemistry and Mechanisms for Continuous Optimization. European Journal of Organic Chemistry, 27 (41). https://doi.org/10.1002/ejoc.202400686
  67. Malik, S., Ahuja, P., Sahu, K., Khan, S. A. (2014). Design and synthesis of new of 3-(benzo[d]isoxazol-3-yl)-1-substituted pyrrolidine-2, 5-dione derivatives as anticonvulsants. European Journal of Medicinal Chemistry, 84, 42–50. https://doi.org/10.1016/j.ejmech.2014.07.016
  68. Aratikatla, E. K., Bhattacharya, A. K. (2019). A Short Review of Synthetic Routes for the Antiepileptic Drug (R)-Lacosamide. Organic Process Research & Development, 24 (1), 17–24. https://doi.org/10.1021/acs.oprd.9b00373
  69. Salomé, C., Salomé-Grosjean, E., Park, K. D., Morieux, P., Swendiman, R., DeMarco, E. et al. (2009). Synthesis and Anticonvulsant Activities of (R)-N-(4′-Substituted)benzyl 2-Acetamido-3-methoxypropionamides. Journal of Medicinal Chemistry, 53 (3), 1288–1305. https://doi.org/10.1021/jm901563p
  70. Morieux, P., Salomé, C., Park, K. D., Stables, J. P., Kohn, H. (2010). The Structure-Activity Relationship of the 3-Oxy Site in the Anticonvulsant (R)-N-Benzyl 2-Acetamido-3-methoxypropionamide. Journal of Medicinal Chemistry, 53 (15), 5716–5726. https://doi.org/10.1021/jm100508m
  71. Morieux, P. P. (2010). A chemical biology approach to discover the biological targets of the antiepileptic drug lacosamide. [Doctoral dissertation, The University of North Carolina at Chapel Hill]. https://doi.org/10.17615/h062-c988
  72. Zhan, K., Liu, Y., Chen, Q., Zhuang, C., Zheng, R. (2024). Advances in the chemoenzymatic synthesis of gamma-aminobutyric acid derivatives. Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 40 (9), 2831–2845. https://doi.org/10.13345/j.cjb.240032
  73. Papagiouvannis, G., Theodosis-Nobelos, P., Tziona, P., Gavalas, A., Kourounakis, P. N., Rekka, E. A. (2022). Gabapentin antioxidant derivatives with anti-inflammatory and neuroprotective potency. Letters in Drug Design & Discovery, 19 (7), 579–590. https://doi.org/10.2174/1570180818666211210161922
  74. Shi, W., Liu, H., Zhang, Y., Zhong, B., Yang, H. (2005). Design, Synthesis, and Preliminary Evaluation of Gabapentin‐Pregabalin Mutual Prodrugs in Relieving Neuropathic Pain. Archiv Der Pharmazie, 338 (8), 358–364. https://doi.org/10.1002/ardp.200400958
  75. Barenie, R., Darrow, J., Avorn, J., Kesselheim, A. S. (2021). Discovery and Development of Pregabalin (Lyrica). Neurology, 97 (17). https://doi.org/10.1212/wnl.0000000000012730
  76. Kavoussi, R. (2006). Pregabalin: From molecule to medicine. European Neuropsychopharmacology, 16, S128–S133. https://doi.org/10.1016/j.euroneuro.2006.04.005
  77. Bryans, J. S., Wustrow, D. J. (1999). 3-Substituted GABA analogs with central nervous system activity: A review. Medicinal Research Reviews, 19 (2), 149–177. https://doi.org/10.1002/(sici)1098-1128(199903)19:2<149::aid-med3>3.0.co;2-b
  78. Belliotti, T. R., Capiris, T., Ekhato, I. V., Kinsora, J. J., Field, M. J., Heffner, T. G. et al. (2005). Structure-Activity Relationships of Pregabalin and Analogues That Target the α2-δ Protein. Journal of Medicinal Chemistry, 48 (7), 2294–2307. https://doi.org/10.1021/jm049762l
  79. Fijałkowski, Ł., Sałat, K., Podkowa, A., Zaręba, P., Nowaczyk, A. (2017). Potential role of selected antiepileptics used in neuropathic pain as human GABA transporter isoform 1 (GAT1) inhibitors – Molecular docking and pharmacodynamic studies. European Journal of Pharmaceutical Sciences, 96, 362–372. https://doi.org/10.1016/j.ejps.2016.10.004
  80. Yuen, P. W. (2007). α2δ Ligands: Neurontin®(Gabapentin) and Lyrica®(Pregabalin). The Art of Drug Synthesis, 225–240. https://doi.org/10.1002/9780470134979.ch16
  81. Taylor, C. P., Angelotti, T., Fauman, E. (2007). Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery. Epilepsy Research, 73 (2), 137–150. https://doi.org/10.1016/j.eplepsyres.2006.09.008
  82. Howard, P., Remi, J., Remi, C., Charlesworth, S., Whalley, H., Bhatia, R. et al. (2018). Levetiracetam. Journal of Pain and Symptom Management, 56 (4), 645–649. https://doi.org/10.1016/j.jpainsymman.2018.07.012
  83. Klitgaard, H., Verdru, P. (2007). Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opinion on Drug Discovery, 2 (11), 1537–1545. https://doi.org/10.1517/17460441.2.11.1537
  84. Kenda, B. M., Matagne, A. C., Talaga, P. E., Pasau, P. M., Differding, E., Lallemand, B. I. et al. (2003). Discovery of 4-Substituted Pyrrolidone Butanamides as New Agents with Significant Antiepileptic Activity. Journal of Medicinal Chemistry, 47 (3), 530–549. https://doi.org/10.1021/jm030913e
  85. Contreras-García, I. J., Cárdenas-Rodríguez, N., Romo-Mancillas, A., Bandala, C., Zamudio, S. R., Gómez-Manzo, S. et al. (2022). Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals, 15 (4), 475. https://doi.org/10.3390/ph15040475
  86. Matagne, A., Margineanu, D., Kenda, B., Michel, P., Klitgaard, H. (2008). Anti‐convulsive and anti‐epileptic properties of brivaracetam (ucb 34714), a high‐affinity ligand for the synaptic vesicle protein, SV2A. British Journal of Pharmacology, 154 (8), 1662–1671. https://doi.org/10.1038/bjp.2008.198
  87. Sills, G. J., Rogawski, M. A. (2020). Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 168, 107966. https://doi.org/10.1016/j.neuropharm.2020.107966
  88. Makki, M., Bakhotmah, D. A., Abdel-Rahman, R. M., Aqlan, F. M. (2018). New Route to Synthesize Fluorine Substituted Lamotrigine Drug Analogues as an Anti-Inflammatory Agent. Current Organic Synthesis, 15 (1), 116–125. https://doi.org/10.2174/1570179414666170509151123
  89. Alkorta, I., Elguero, J., Font, A., Galcera, J., Mata, I., Molins, E., Virgili, A. (2014). An experimental and theoretical study of the structure of Lamotrigine in its neutral and protonated forms: evidence of Lamotrigine enantiomers. Tetrahedron, 70 (17), 2784–2795. https://doi.org/10.1016/j.tet.2014.02.075
  90. Saralaya, S. S., Hiriyalau, S. S. (2024). An overview of prior art disclosures about the synthesis of lamotrigine and a glimpse of its closely related compounds. Indian Journal of Pharmacy & Drug Studies, 3 (1), 8–15. Available at: https://mansapublishers.com/index.php/ijpds/article/view/4503
  91. Pearl, N. Z., Babin, C. P., Catalano, N. T., Blake, J. C., Ahmadzadeh, S., Shekoohi, S., Kaye, A. D. (2023). Narrative Review of Topiramate: Clinical Uses and Pharmacological Considerations. Advances in Therapy, 40 (9), 3626–3638. https://doi.org/10.1007/s12325-023-02586-y
  92. Casini, A., Antel, J., Abbate, F., Scozzafava, A., David, S., Waldeck, H., Schäfer, S., Supuran, C. T. (2003). Carbonic anhydrase inhibitors: SAR and X-ray crystallographic study for the interaction of sugar sulfamates/sulfamides with isozymes I, II and IV. Bioorganic & Medicinal Chemistry Letters, 13 (5), 841–845. https://doi.org/10.1016/s0960-894x(03)00029-5
  93. Maryanoff, B. (2009). Sugar Sulfamates for Seizure Control: Discovery and Development of Topiramate, a Structurally Unique Antiepileptic Drug. Current Topics in Medicinal Chemistry, 9 (11), 1049–1062. https://doi.org/10.2174/156802609789630938
  94. Maryanoff, B. E., McComsey, D. F., Costanzo, M. J., Hochman, C., Smith-Swintosky, V., Shank, R. P. (2004). Comparison of Sulfamate and Sulfamide Groups for the Inhibition of Carbonic Anhydrase-II by Using Topiramate as a Structural Platform. Journal of Medicinal Chemistry, 48 (6), 1941–1947. https://doi.org/10.1021/jm040124c
  95. Moore, G. (2017). The design and synthesis of novel APIs based upon topiramate. [Doctoral Dissertation: Newcastle University]. Available at: https://theses.ncl.ac.uk/jspui/handle/10443/3828
  96. Ghiasi, M., Kamalinahad, S., Arabieh, M., Zahedi, M. (2012). Carbonic anhydrase inhibitors: A quantum mechanical study of interaction between some antiepileptic drugs with active center of carbonic anhydrase enzyme. Computational and Theoretical Chemistry, 992, 59–69. https://doi.org/10.1016/j.comptc.2012.05.005
  97. Saeidian, H., Abdoli, M. (2015). The first general protocol forN-monoalkylation of sulfamate esters: benign synthesis ofN-alkyl Topiramate (anticonvulsant drug) derivatives. Journal of Sulfur Chemistry, 36 (5), 463–470. https://doi.org/10.1080/17415993.2015.1069294
  98. El Kayal, W., Severina, H., Tsyvunin, V., Zalevskyi, S., Shtrygol’, S., Vlasov, S. et al. (2022). Synthesis and anticonvulsant activity evaluation of n-[(2,4-dichlorophenyl)methyl]-2-(2,4-dioxo-1h-quinazolin-3-yl)acetamide novel 1-benzylsubstituted derivatives. ScienceRise: Pharmaceutical Science, 1 (35), 58–69. https://doi.org/10.15587/2519-4852.2022.253554
  99. Kushniruk, V. M., Kovalevska, I. V., Ruban, O. A., Harna, N. V., Georgiyants, V. A. (2016). (2016). Technology scaling for obtaining N,N –dibenzyl amide of malonic acid – a potential anticonvulsant – in industrial environments. ScienceRise: Pharmaceutical Science, 4 (4), 30–35. https://doi.org/10.15587/2519-4852.2016.87441
  100. Kavraiskyi, D. P., Shtrygol, S. Yu., Georgiyants, V. A., Severina, H. I. (2016). Experimental study of new pyrazolo[3,4-D]pyrimidine-4-one derivatives for anticonvulsant activity spectrum. ScienceRise: Pharmaceutical Science, 1 (1), 10–17. https://doi.org/10.15587/2519-4852.2016.70528
  101. Davydov, E., Hoidyk, M., Shtrygol’, S., Karkhut, A., Polovkovych, S., Klyuchivska, O. et al. (2024). Evaluation of thiopyrano[2,3‐d]thiazole derivatives as potential anticonvulsant agents. Archiv Der Pharmazie, 357 (10). https://doi.org/10.1002/ardp.202400357
Structural-fragment analysis of active pharmaceutical ingredients of antiepileptic drugs in group N03A of the Ukrainian pharmaceutical market and their pharmacophoric features

Downloads

Published

2025-08-30

How to Cite

Stasevych, M., Hoidyk, M., Roman, O., Konechna, R., Karkhut, A., Lozynskyi, A., Polovkovych, S., & Lesyk, R. (2025). Structural-fragment analysis of active pharmaceutical ingredients of antiepileptic drugs in group N03A of the Ukrainian pharmaceutical market and their pharmacophoric features. ScienceRise: Pharmaceutical Science, (4 (56), 20–34. https://doi.org/10.15587/2519-4852.2025.337842

Issue

Section

Pharmaceutical Science