Огляд похідних 1,2,4-триазолу та 1,3,4-тіадіазолу як потенційних знеболювальних та протизапальних засобів

Автор(и)

  • Андрій Ярославович Коваль Львівський національний медичний університет імені Данила Галицького, Україна
  • Андрій Володимирович Лозинський Львівський національний медичний університет імені Данила Галицького, Україна https://orcid.org/0000-0001-7151-2159
  • Сергій Юрійович Штриголь Національний фармацевтичний університет, Україна https://orcid.org/0000-0001-7257-9048
  • Роман Богданович Лесик Університет інформаційних технологій та управління в Жешуві; Львівський національний медичний університет імені Данила Галицького, Україна https://orcid.org/0000-0002-3322-0080

DOI:

https://doi.org/10.15587/2519-4852.2022.255276

Ключові слова:

гетероцикли, тріазоли, тіадіазоли, протизапальна активність, анальгетична активність, НПЗП

Анотація

Мета. Метою даного огляду є узагальнення даних про синтез та структурну модифікацію гетероциклічних систем з тріазольним та тіадіазольним фрагментами в молекулах як перспективних об’єктів у біоорганічній та медичній хімії.

Матеріали та методи. У дослідженні застосовано бібліосемантичний та аналітичний методи використовуючи бібліографічні і реферативні бази даних, а також бази даних хімічних сполук.

Результати. Сучасна медична хімія стикається з багатьма проблемами, одна з яких – необхідність визначення активності та специфічності потенційного терапевтичного агента. Останні наукові дані вказують на те, що похідним тріазолу та/чи тіадіазолу притаманний широкий спектр біологічної дії, зокрема протимікробна, протигрибкова, противірусна, протиракова та антиконвульсантна. Синтетичні дослідження, дозволили запропонувати низку нових спрямувань молекулярного дизайну біологічно активних похідних тріазолу та/чи тіадіазолу, а також одержати сфокусовані бібліотеки, що нараховують сотні нових сполук. Ця оглядова стаття є спробою узагальнити дані щодо їх анальгезуючої та протизапальної активності за останнє десятиліття. У роботі проаналізовано ряди похідних тріазолу та/чи тіадіазолу, та наведено залежності «структура-активність». Для оптимізації і раціонального дизайну високоактивних молекул з оптимальними «лікоподібними» характеристиками та визначення можливого механізму біологічної дії проведено узагальнення даних щодо SAR- і QSAR-аналізу і молекулярного докінгу серед даного класу гетероциклічних сполук.

Висновки. Показано, що гетероциклічні системи, що містять фрагменти тріазолу та/чи тіадіазолу, є суттєвим джерелом перспективних анальгетичних та/чи протизапальних засобів. Встановлено, що згадані гетероциклічні похідні володіють високою селективністю дії, малою токсичністю та ефектом, що співмірний з існуючими лікарськими засобами

Біографії авторів

Андрій Ярославович Коваль, Львівський національний медичний університет імені Данила Галицького

Асистент

Кафедра менеджменту в охороні здоров’я, фармакотерапії і клінічної фармації

Андрій Володимирович Лозинський, Львівський національний медичний університет імені Данила Галицького

Кандидат фармацевтичних наук, доцент

Кафедра фармацевтичної, органічної і біоорганічної хімії

Сергій Юрійович Штриголь, Національний фармацевтичний університет

Доктор медичних наук, професор, завідувач кафедри

Кафедра фармакології та фармакотерапії

Роман Богданович Лесик, Університет інформаційних технологій та управління в Жешуві; Львівський національний медичний університет імені Данила Галицького

Доктор фармацевтичних наук, професор, завідувач кафедри

Кафедра фармацевтичної, органічної і біоорганічної хімії

Посилання

  1. Gomtsyan, A. (2012). Heterocycles in drugs and drug discovery. Chemistry of Heterocyclic Compounds, 48 (1), 7–10. doi: http://doi.org/10.1007/s10593-012-0960-z
  2. Heravi, M. M., Zadsirjan, V. (2020). Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances, 10 (72), 44247–44311. doi: http://doi.org/10.1039/d0ra09198g
  3. Broughton, H. B., Watson, I. A. (2004). Selection of heterocycles for drug design. Journal of Molecular Graphics and Modelling, 23 (1), 51–58. doi: http://doi.org/10.1016/j.jmgm.2004.03.016
  4. Taylor, A. P., Robinson, R. P., Fobian, Y. M., Blakemore, D. C., Jones, L. H., Fadeyi, O. (2016). Modern advances in heterocyclic chemistry in drug discovery. Organic & Biomolecular Chemistry, 14 (28), 6611–6637. doi: http://doi.org/10.1039/c6ob00936k
  5. Keserü, G. M., Makara, G. M. (2009). The influence of lead discovery strategies on the properties of drug candidates. Nature Reviews Drug Discovery, 8 (3), 203–212. doi: http://doi.org/10.1038/nrd2796
  6. Maertens, J. A. (2004). History of the development of azole derivatives. Clinical Microbiology and Infection, 10, 1–10. doi: http://doi.org/10.1111/j.1470-9465.2004.00841.x
  7. Zhang, H.-Z., Gan, L.-L., Wang, H., Zhou, C.-H. (2016). New Progress in Azole Compounds as Antimicrobial Agents. Mini-Reviews in Medicinal Chemistry, 17 (2), 122–166. doi: http://doi.org/10.2174/1389557516666160630120725
  8. Melekh, B., Ilkiv, I., Lozynskyi, A., Sklyarov, A. (2017). Antioxidant enzyme activity and lipid peroxidation in rat liver exposed to celecoxib and lansoprazole under epinephrine-induced stress. Journal of Applied Pharmaceutical Science, 7 (10), 94–99. doi: http://doi.org/10.7324/japs.2017.71013
  9. Lesyk, R., Zimenkovsky, B. (2004). 4-Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry. Current Organic Chemistry, 8 (16), 1547–1577. doi: http://doi.org/10.2174/1385272043369773
  10. Neha, Dwivedi, A. R., Kumar, R., Kumar, V. (2018). Recent Synthetic Strategies for Monocyclic Azole Nucleus and Its Role in Drug Discovery and Development. Current Organic Synthesis, 15 (3), 321–340. doi: http://doi.org/10.2174/1570179414666171013154337
  11. Shafran, E. A., Bakulev, V. A., Rozin, Y. A., Shafran, Y. M. (2008). Condensed 1,2,3-triazoles (review). Chemistry of Heterocyclic Compounds, 44 (9), 1040–1069. doi: http://doi.org/10.1007/s10593-008-0155-9
  12. Xu, P.-F., Zhang, Z.-H., Hui, X.-P., Zhang, Z.-Y., Zheng, R.-L. (2004). Synthesis of Triazoles, Oxadiazoles and Condensed Heterocyclic Compounds Containing Cinchopheny and Studies on Biological Activity of Representative Compounds. Journal of the Chinese Chemical Society, 51 (2), 315–319. doi: http://doi.org/10.1002/jccs.200400049
  13. El Bakri, Y., Marmouzi, I., El Jemli, M., Anouar, E. H., Karthikeyan, S., Harmaoui, A. et. al. (2019). Synthesis, biological activity and molecular modeling of a new series of condensed 1,2,4-triazoles. Bioorganic Chemistry, 92, 103193. doi: http://doi.org/10.1016/j.bioorg.2019.103193
  14. Wang, Z., Shi, H., Shi, H. (2001). Novel synthesis of condensed heterocyclic systems containing 1,2,4-triazole ring. Synthetic Communications, 31 (18), 2841–2848. doi: http://doi.org/10.1081/scc-100105335
  15. Sai Sudhir, V., Phani Kumar, N. Y., Nasir Baig, R. B., Chandrasekaran, S. (2009). Facile Entry into Triazole Fused Heterocycles via Sulfamidate Derived Azido-alkynes. The Journal of Organic Chemistry, 74 (19), 7588–7591. doi: http://doi.org/10.1021/jo9016748
  16. Dwivedi, J., Kaur, N., Kishore, D., Kumari, S., Sharma, S. (2016). Synthetic and Biological Aspects of Thiadiazoles and their Condensed Derivatives: An Overview. Current Topics in Medicinal Chemistry, 16 (26), 2884–2920. doi: http://doi.org/10.2174/1568026616666160506144859
  17. Swamy, S. N., Basappa, Priya, B. S., Prabhuswamy, B., Doreswamy, B. H., Prasad, J. S., Rangappa, K. S. (2006). Synthesis of pharmaceutically important condensed heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivatives as antimicrobials. European Journal of Medicinal Chemistry, 41 (4), 531–538. doi: http://doi.org/10.1016/j.ejmech.2005.12.009
  18. El-Sayed, R. (2012). Substituted Thiadiazole, Oxadiazole, Triazole and Triazinone as Antimicrobial and Surface Activity Compounds. Journal of Surfactants and Detergents, 16 (1), 39–47. doi: http://doi.org/10.1007/s11743-012-1368-6
  19. Holland-Nell, K., Meldal, M. (2011). Maintaining Biological Activity by Using Triazoles as Disufide Bond Mimetics. Angewandte Chemie International Edition, 50 (22), 5204–5206. doi: http://doi.org/10.1002/anie.201005846
  20. Yushyn, I., Holota, S., Lesyk, R. (2022). 2,2-Dichloro-N-[5-[2-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrazol-2-yl]-2-oxoethyl]sulfanyl-1,3,4-thiadiazol-2-yl]acetamide. Molbank, 2022 (1), M1328. doi: http://doi.org/10.3390/m1328
  21. Frija, L. M. T., Pombeiro, A. J. L., Kopylovich, M. N. (2016). Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coordination Chemistry Reviews, 308, 32–55. doi: http://doi.org/10.1016/j.ccr.2015.10.003
  22. Sayed, A. R. (2010). Synthesis of novel thiadiazoles and bis-thiadiazoles from carbonothioic dihydrazide. Tetrahedron Letters, 51 (34), 4490–4493. doi: http://doi.org/10.1016/j.tetlet.2010.06.060
  23. Gomha, S. M., Salah, T. A., Abdelhamid, A. O. (2014). Synthesis, characterization, and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as anticancer agents. Monatshefte Für Chemie – Chemical Monthly, 146 (1), 149–158. doi: http://doi.org/10.1007/s00706-014-1303-9
  24. Zhu, Y., Cai, Q., Gao, Q., Jia, F., Liu, M., Gao, M., Wu, A. (2013). Target-oriented synthesis: miscellaneous synthetic routes to access 1,4-enediones through the coupling of 1,3-dicarbonyl compounds with multiform substrates. Tetrahedron, 69 (31), 6392–6398. doi: http://doi.org/10.1016/j.tet.2013.05.106
  25. Rivkin, A., Yoshimura, F., Gabarda, A. E., Chou, T.-C., Dong, H., Tong, W. P., Danishefsky, S. J. (2003). Complex Target-Oriented Total Synthesis in the Drug Discovery Process: The Discovery of a Highly Promising Family of Second Generation Epothilones. Journal of the American Chemical Society, 125 (10), 2899–2901. doi: http://doi.org/10.1021/ja029695p
  26. Magalhães, C. M., González-Berdullas, P., Duarte, D., Correia, A. S., Rodríguez-Borges, J. E., Vale, N. et. al. (2021). Target-Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity by Applying the Heavy-Atom Effect. Biomedicines, 9 (9), 1199. doi: http://doi.org/10.3390/biomedicines9091199
  27. Spandl, R. J., Díaz‐Gavilán, M., O’Connell, K. M. G., Thomas, G. L., Spring, D. R. (2008). Diversity‐oriented synthesis. The Chemical Record, 8 (3), 129–142. doi: http://doi.org/10.1002/tcr.20144
  28. Galloway, W. R. J. D., Isidro-Llobet, A., Spring, D. R. (2010). Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Communications, 1 (1). doi: http://doi.org/10.1038/ncomms1081
  29. Biggs-Houck, J. E., Younai, A., Shaw, J. T. (2010). Recent advances in multicomponent reactions for diversity-oriented synthesis. Current Opinion in Chemical Biology, 14 (3), 371–382. doi: http://doi.org/10.1016/j.cbpa.2010.03.003
  30. Spring, D. R. (2003). Diversity-oriented synthesis; a challenge for synthetic chemists. Organic & biomolecular chemistry, 1 (22), 3867–3870. doi: http://doi.org/10.1039/b310752n
  31. Shiradkar, M., Pandit, U., Akula, K. C., Maheta, A., Kumar, G. V. S. (2007). Microwave assisted synthesis and antimicrobial screening of fused triazoles. Arkivoc, 2006 (14), 141–154. doi: http://doi.org/10.3998/ark.5550190.0007.e16
  32. Lingappa, B., Girisha, K. S., Kalluraya, B., Rai, N. S., Kumari, N. S. (2008). Regioselective reaction: synthesis of novel Mannich bases derived from 3-(4,6-disubstituted-2-thiomethylpyrimidyl)-4-amino-5-mercapto-1,2,4-triazoles and their antimicrobial properties. Indian Journal of Chemistry, 47B, 1858–1864.
  33. Gautam, N., Chourasia, O. P. (2010). Synthesis, antimicrobial and insecticidal activity of some 4H-1,2,4 triazole derivatives. Indian Journal of Chemistry, 49B, 956–959.
  34. Kumar, P. V., Rao, V. R. (2008). Synthesis and antitubercular, antiviral and anticancer activity of 3-(3-mercaptoalkyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazin-6-yl)chromen-2-one and its derivatives. Indian Journal of Chemistry, 47B, 106–111.
  35. Wu, J., Liu, X., Cheng, X., Cao, Y., Wang, D., Li, Z. et. al. (2007). Synthesis of Novel Derivatives of 4-Amino-3-(2-Furyl)-5-Mercapto-1,2,4-Triazole as Potential HIV-1 NNRTIs. Molecules, 12 (8), 2003–2016. doi: http://doi.org/10.3390/12082003
  36. Fathalla, W., Rayes, S. M. E., Ali, I. A. I. (2007). Convenient synthesis of 1-substituted-4-methyl-5-oxo [1,2,4]triazolo[4,3-a]quinazolines. Arkivoc, 2007 (16), 173–186. doi: http://doi.org/10.3998/ark.5550190.0008.g18
  37. Chen, J., Sun, X.-Y., Chai, K.-Y., Lee, J.-S., Song, M.-S., Quan, Z.-S. (2007). Synthesis and anticonvulsant evaluation of 4-(4-alkoxylphenyl)-3-ethyl-4H-1,2,4-triazoles as open-chain analogues of 7-alkoxyl-4,5-dihydro[1,2,4]triazolo[4,3-a]quinolines. Bioorganic & Medicinal Chemistry, 15 (21), 6775–6781. doi: http://doi.org/10.1016/j.bmc.2007.08.004
  38. Kavraiskyi, D. P., Shtrygol', S. Yu., Georgiyants, V. A., Saidov, N. B. (2016). Screening investigation of novel 1,2,4-triazole-3-thione derivatives on anticonvulsant activity. International Journal of Pharmacy and Chemistry, 2 (2), 47–51.
  39. Glushchenko, A. V., Rybalchenko, T. L., Shtrygol, S. Yu., Georgiyants, V. A., Perekhoda, L. A. (2010). Anticonvulsan t activity of derivatives 1-substitute 5-methyl(amino)-l,2,3-triazole. Ukrainian biopharmaceutical journal, 3 (8), 28–34.
  40. Rybalchenko, T. L., Shtrygol, S. Y., Georgiyants, V. A. (2014). Definition of spectrum of the anticonvulsant activity for the new anticonvulsants – 1,2,3-triazole and 1,3,4-oxadiazole derivatives. Belgorod State University Scientific bulletin. Medicine Pharmacy, 11 (182), 26/1, 199–203.
  41. Zhao, X.-L., Zhao, Y.-F., Guo, S.-C., Song, H.-S., Wang, D., Gong, P. (2007). Synthesis and Anti-tumor Activities of Novel [1,2,4]triazolo[1,5-a]pyrimidines. Molecules, 12 (5), 1136–1146. doi: http://doi.org/10.3390/12051136
  42. Manikrao, A. M., Fursule, R. A., Rajesh, K. S., Kunjwani, H. K., Sabale, P. M. (2010). Synthesis and biological screening of novel derivatives of 3-(N-substituted carboxamidoethylthio)-(4H)-1,2,4-triazoles. Indian Journal of Chemistry, 49B, 1642–1647.
  43. Ramakrishna, M., Himabindu, V., Reddy, T. M., Chakravarthy, A. K. (2011). s-Triazolo[3,4-b][1,3,4]thiadiazoles, s-Triazolo[3,4-b][1,3,4]thiadiazines and s-Triazolo[3',4':2,3]thiadiazino[5,6-b]quinoxaline Derivatives of Clubbed Triazole: Novel Pharmacophore as Dual Inhibitors. Asian Journal of Chemistry, 23 (1), 439.
  44. Sukla, D. K., Srivastava, S. D. (2008). Synthesis of some new 5-[{1,2,3-benzotriazole)-1-yl-methyl}-1’-(4’-substituted aryl-3’-choloro-2’-oxo azetidine)}amino-1,3,4-thiadiazoles: antifungal and antibacterial agents. Indian Journal of Chemistry, 47B, 463–469.
  45. Demirbas, N., Karaoglu, S. A., Demirbas, A., Çelik, E. (2005). Synthesis and antimicrobial activities of some new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles and [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazines. Arkivoc, 2005 (1), 75–91. doi: http://doi.org/10.3998/ark.5550190.0006.108
  46. Farghaly, A.-R., Clercq, E. D., El-Kashef, H. (2006). Synthesis and antiviral activity of novel [1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles, [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazines and [1,2,4]triazolo[3,4-b][1,3,4] thiadiazepines. Arkivoc, 2006 (10), 137–151. doi: http://doi.org/10.3998/ark.5550190.0007.a17
  47. Matysiak, J., Nasulewicz, A., Pełczyńska, M., Świtalska, M., Jaroszewicz, I., Opolski, A. (2006). Synthesis and antiproliferative activity of some 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. European Journal of Medicinal Chemistry, 41 (4), 475–482. doi: http://doi.org/10.1016/j.ejmech.2005.12.007
  48. Pattanayak, P., Sharma R. 2-Amino-5-sulphanyl 1,3,4-thiadiazole derivatives as anticonvulsant agents: Synthesis and Evaluation (2010). Indian Journal of Chemistry, 49B, 1531–1534.
  49. Teall, J., Tuchman, M., Cutler, N., Gross, M., Willoughby, E. et. al. (1998). Rizatriptan (MAXALT) for the Acute Treatment of Migraine and Migraine Recurrence. A Placebo-Controlled, Outpatient Study. Headache: The Journal of Head and Face Pain, 38 (4), 281–287. doi: http://doi.org/10.1046/j.1526-4610.1998.3804281.x
  50. Dooley, M., Faulds, D. (1999). Rizatriptan: a review of its efficacy in the management of migraine. Drugs, 58 (4), 699–723. doi: http://doi.org/10.2165/00003495-199958040-00013
  51. Silberstein, S. D., Massiou, H., Le Jeunne, C., Johnson-Pratt, L., Mccarroll, K. A., Lines, C. R. (2000). Rizatriptan in the Treatment of Menstrual Migraine. Obstetrics & Gynecology, 96 (2), 237–242. doi: http://doi.org/10.1097/00006250-200008000-00016
  52. Láinez, M. J. (2006). Rizatriptan in the treatment of migraine. Neuropsychiatric Disease and Treatment, 2 (3), 247–259. doi: http://doi.org/10.2147/nedt.2006.2.3.247
  53. Winner, P., Lewis, D., Visser, W. H., Jiang, K., Ahrens, S., Evans, J. K. (2002). Rizatriptan 5 mg for the Acute Treatment of Migraine in Adolescents: A Randomized, Double-Blind, Placebo-Controlled Study. Headache: The Journal of Head and Face Pain, 42 (1), 49–55. doi: http://doi.org/10.1046/j.1526-4610.2002.02013.x
  54. Ahonen, K., Hamalainen, M. L., Eerola, M., Hoppu, K. (2006). A randomized trial of rizatriptan in migraine attacks in children. Neurology, 67 (7), 1135–1140. doi: http://doi.org/10.1212/01.wnl.0000238179.79888.44
  55. Sahu, J. K., Ganguly, S., Kaushik, A. (2013). Triazoles: A valuable insight into recent developments and biological activities. Chinese Journal of Natural Medicines, 11 (5), 456–465. doi: http://doi.org/10.1016/s1875-5364(13)60084-9
  56. Ravindra, K. C., Vagdevi, H. M., Vaidya, V. P. (2008). Synthesis, characterization and pharmacological studies on some triazolothiadiazines and triazolothiadiazoles containing naphtho[2,b]furan. Indian Journal of Chemistry, 47B, 1271–1276.
  57. Desai, S., Bennur, R., Bennur, S., Laddi, U., Patil, P. (2011). Synthesis and pharmacological activities of some new 3-Substituted-4-Amino-5-Mercapto-1,2,4-Triazoles. Indian Journal of Pharmaceutical Sciences, 73 (1), 115–120. doi: http://doi.org/10.4103/0250-474x.89771
  58. Tozkoparan, B., Aktay, G., Yeşilada, E. (2002). Synthesis of some 1,2,4-triazolo[3,2-b]-1,3-thiazine-7-ones with potential analgesic and antiinflammatory activities. Il Farmaco, 57 (2), 145–152. doi: http://doi.org/10.1016/s0014-827x(01)01195-8
  59. Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B. (2010). 4-[3-(Phenoxymethyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl]-3-(p-tolyl)sydnone. Acta Crystallographica Section E Structure Reports Online, 66 (8), o2178–o2179. doi: http://doi.org/10.1107/s1600536810029910
  60. El Shehry, M. F., Abu-Hashem, A. A., El-Telbani, E. M. (2010). Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents. European Journal of Medicinal Chemistry, 45 (5), 1906–1911. doi: http://doi.org/10.1016/j.ejmech.2010.01.030
  61. Mahajan, N. S., Manikrao, A. M., Shinde, P. N., Jawarkar, R. D., Khatale, P. N., Dhawale, S. C. (2012). A Review: Biological Importance of Mercapto Substituted 1,2,4-triazole Derivatives. Research Journal of Pharmacy and Technology, 5 (7), 863–876.
  62. Moise, M., Sunel, V., Profire, L., Popa, M., Desbrieres, J., Peptu, C. (2009). Synthesis and Biological Activity of Some New 1,3,4-Thiadiazole and 1,2,4-Triazole Compounds Containing a Phenylalanine Moiety. Molecules, 14 (7), 2621–2631. doi: http://doi.org/10.3390/molecules14072621
  63. Mulla, J. A. S., Khazi, M. I. A., Panchamukhi, S. I., Gong, Y.-D., Khazi, I. A. M. (2014). Synthesis and pharmacological evaluation of novel thienopyrimidine and triazolothienopyrimidine derivatives. Medicinal Chemistry Research, 23 (6), 3235–3243. doi: http://doi.org/10.1007/s00044-013-0900-1
  64. Mathew, V., Keshavayya, J., Vaidya, V. P. (2006). Heterocyclic system containing bridgehead nitrogen atom: synthesis and pharmacological activities of some substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles. European Journal of Medicinal Chemistry, 41 (9), 1048–1058. doi: http://doi.org/10.1016/j.ejmech.2006.03.018
  65. Mathew, V., Keshavayya, J., Vaidya, V. P., Giles, D. (2007). Studies on synthesis and pharmacological activities of 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their dihydro analogues. European Journal of Medicinal Chemistry, 42 (6), 823–840. doi: http://doi.org/10.1016/j.ejmech.2006.12.010
  66. Karegoudar, P., Prasad, D. J., Ashok, M., Mahalinga, M., Poojary, B., Holla, B. S. (2008). Synthesis, antimicrobial and anti-inflammatory activities of some 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines bearing trichlorophenyl moiety. European Journal of Medicinal Chemistry, 43 (4), 808–815. doi: http://doi.org/10.1016/j.ejmech.2007.06.026
  67. Aytaç, S. P., Tozkoparan, B., Kaynak, F. B., Aktay, G., Göktaş, Ö., Ünüvar, S. (2009). Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/anti-inflammatory compounds. European Journal of Medicinal Chemistry, 44 (11), 4528–4538. doi: http://doi.org/10.1016/j.ejmech.2009.06.026
  68. Husain, A., Naseer, M. A. (2009). Studies on fused heterocyclic 3,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazoles: synthesis and biological evaluation. Medicinal Chemistry Research, 20 (1), 47–54. doi: http://doi.org/10.1007/s00044-009-9281-x
  69. Hussein, M. A., Shaker, R. M., Ameen, M. A., Mohammed, M. F. (2011). Synthesis, anti-inflammatory, analgesic, and antibacterial activities of some triazole, triazolothiadiazole, and triazolothiadiazine derivatives. Archives of Pharmacal Research, 34 (8), 1239–1250. doi: http://doi.org/10.1007/s12272-011-0802-z
  70. Malladi, S., Isloor, A. M., Shetty, P., Fun, H. K., Telkar, S., Mahmood, R., Isloor, N. (2011). Synthesis and anti-inflammatory evaluation of some new 3,6-disubstituted-1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles bearing pyrazole moiety. Medicinal Chemistry Research, 21 (10), 3272–3280. doi: http://doi.org/10.1007/s00044-011-9865-0
  71. Turan-Zitouni, G., Kaplancikli, Z., Erol, K., Kiliç, F. (1999). Synthesis and analgesic activity of some triazoles and triazolothiadiazines. Il Farmaco, 54 (4), 218–223. doi: http://doi.org/10.1016/s0014-827x(99)00016-6
  72. Karthikeyan, M. S., Holla, B. S., Kalluraya, B., Kumari, N. S. (2007). Biological Studies of Some 2,4-Dichloro-5-fluorophenyl Containing Triazolothiadiazoles. Monatshefte Für Chemie – Chemical Monthly, 138 (12), 1309–1316. doi: http://doi.org/10.1007/s00706-007-0718-y
  73. Khan, I., Ibrar, A., Abbas, N. (2013). Triazolothiadiazoles and triazolothiadiazines – Biologically attractive scaffolds. European Journal of Medicinal Chemistry, 63, 854–868. doi: http://doi.org/10.1016/j.ejmech.2013.01.060
  74. Kamel, M. M., Megally Abdo, N. Y. (2014). Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. European Journal of Medicinal Chemistry, 86, 75–80. doi: http://doi.org/10.1016/j.ejmech.2014.08.047
  75. Boraei, A. T. A., Ghabbour, H. A., Gomaa, M. S., El Ashry, E. S. H., Barakat, A. (2019). Synthesis and Anti-Proliferative Assessment of Triazolo-Thiadiazepine and Triazolo-Thiadiazine Scaffolds. Molecules, 24 (24), 4471. doi: http://doi.org/10.3390/molecules24244471
  76. Ma, W., Chen, P., Huo, X., Ma, Y., Li, Y., Diao, P. et. al. (2020). Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. European Journal of Medicinal Chemistry, 208, 112847. doi: http://doi.org/10.1016/j.ejmech.2020.112847
  77. Ibrar, A., Zaib, S., Jabeen, F., Iqbal, J., Saeed, A. (2016). Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin-Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis. Archiv Der Pharmazie, 349 (7), 553–565. doi: http://doi.org/10.1002/ardp.201500392
  78. Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A., Revial, G. (2008). New triazole and triazolothiadiazine derivatives as possible antimicrobial agents. European Journal of Medicinal Chemistry, 43 (1), 155–159. doi: http://doi.org/10.1016/j.ejmech.2007.03.019
  79. Suresh Kumar, G. V., Rajendra Prasad, Y., Mallikarjuna, B. P., Chandrashekar, S. M. (2010). Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents. European Journal of Medicinal Chemistry, 45 (11), 5120–5129. doi: http://doi.org/10.1016/j.ejmech.2010.08.023
  80. Abdelhameed, R. M., El-Sayed, H. A., El-Shahat, M., El-Sayed, A. A., Darwesh, O. M. (2018). Novel Triazolothiadiazole and Triazolothiadiazine Derivatives Containing Pyridine Moiety: Design, Synthesis, Bactericidal and Fungicidal Activities. Current Bioactive Compounds, 14 (2), 169–179. doi: http://doi.org/10.2174/1573407213666170127095158
  81. Husain, A., Asif, M., Bhutani, R., Dutta, M. (2013). Triazolothiadiazoles as antimicrobial agent: a short riview. World Journal of Pharmaceutical Sciences, 1 (4), 138–150.
  82. Appell, M., Compton, D. L., Evans, K. O. (2020). Predictive Quantitative Structure–Activity Relationship Modeling of the Antifungal and Antibiotic Properties of Triazolothiadiazine Compounds. Methods and Protocols, 4 (1), 2. doi: http://doi.org/10.3390/mps4010002
  83. Sim, K.-M., Teo, K.-C. (2018). Synthesis, Characterization and Antibacterial Evaluation of some New 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines as Potential Antibacterial Agents. Letters in Drug Design & Discovery, 15 (7), 733–743. doi: http://doi.org/10.2174/1570180814666170922165933
  84. Zhang, H.-J., Wang, X.-Z., Cao, Q., Gong, G.-H., Quan, Z.-S. (2017). Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorganic & Medicinal Chemistry Letters, 27 (18), 4409–4414. doi: http://doi.org/10.1016/j.bmcl.2017.08.014
  85. Kishore Kumar, A., Sunitha, V., Shankar, B., Ramesh, M., Murali Krishna, T., Jalapathi, P. (2016). Synthesis, biological evaluation, and molecular docking studies of novel 1,2,3-triazole derivatives as potent anti-inflammatory agents. Russian Journal of General Chemistry, 86 (5), 1154–1162. doi: http://doi.org/10.1134/s1070363216050297
  86. Mehta, D. K., Taya, P., Das, R., Dua, K. (2019). Design, Synthesis and Molecular Docking Studies of Novel Thiadiazole Analogues with Potential Antimicrobial and Antiinflammatory Activities. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 18 (2), 91–109. doi: http://doi.org/10.2174/1871520619666190307162442
  87. Shkair, A. M., Shakya, A. K., Raghavendra, N. M., Naik, R. R. (2016). Molecular Modeling, Synthesis and Pharmacological Evaluation of 1,3,4-Thiadiazoles as Anti-inflammatory and Analgesic Agents. Medicinal Chemistry, 12 (1), 90–100. doi: http://doi.org/10.2174/1573406411666150608102236
  88. Omar, Y. M., Abdu-Allah, H. H. M., Abdel-Moty, S. G. (2018). Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorganic Chemistry, 80, 461–471. doi: http://doi.org/10.1016/j.bioorg.2018.06.036
  89. Tariq, S., Alam, O., Amir, M. (2018). Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorganic Chemistry, 76, 343–358. doi: http://doi.org/10.1016/j.bioorg.2017.12.003
  90. Tariq, S., Alam, O., Amir, M. (2018). Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Archiv Der Pharmazie, 351 (3-4), 1700304. doi: http://doi.org/10.1002/ardp.201700304
  91. Haider, S., Alam, M. S., Hamid, H., Dhulap, A., Kumar, D. (2019). Design, synthesis and biological evaluation of benzoxazolinone-containing 1,3,4-thiadiazoles as TNF-α inhibitors. Heliyon, 5 (4), e01503. doi: http://doi.org/10.1016/j.heliyon.2019.e01503

##submission.downloads##

Опубліковано

2022-04-29

Як цитувати

Коваль, А. Я., Лозинський, А. В., Штриголь, С. Ю., & Лесик, Р. Б. (2022). Огляд похідних 1,2,4-триазолу та 1,3,4-тіадіазолу як потенційних знеболювальних та протизапальних засобів. ScienceRise: Pharmaceutical Science, (2(36), 10–17. https://doi.org/10.15587/2519-4852.2022.255276

Номер

Розділ

Фармацевтичні науки