Synthesis, anticancer properties evaluation and in silico studies of 2-chloro- and 2,2-dichloroacetamides bearing thiazole scaffolds

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.323594

Keywords:

chloroacetamides, dichloroacetamides, aminothiazoles, anticancer activity, quantum-chemical calculations, molecular docking, glutathione, GST inhibition

Abstract

The aim. The study aimed to synthesize and evaluate the anticancer activity of a series of 2-chloro- and 2,2-dichloroacetamides bearing thiazole scaffolds. Particular attention was paid to their cytotoxic effects, chemical properties, and action mechanisms, with a focus on glutathione S-transferase (GST) inhibition as a potential pathway for anticancer activity.

Materials and methods. The compounds were synthesized using acylation reactions and characterized via 1H and 13C NMR spectroscopy as well as LC-MS. Their cytotoxicity was assessed using the MTT assay across cancer and pseudo-normal cell lines. Quantum-chemical calculations were performed using DFT, while molecular docking studies analyzed interactions with GST to explore their interaction.

Results. Among the synthesized derivatives, 2-chloroacetamides exhibited significant cytotoxic activity against human acute T cell leukemia (Jurkat) and triple-negative breast cancer (MDA-MB-231) cell lines, as well as Ba/F3 cells with calreticulin mutations. In contrast, 2,2-dichloroacetamides showed negligible activity across all tested cell lines. Quantum-chemical analysis indicated that structural and electronic differences between these two compound classes likely influence their bioactivity. Molecular docking studies revealed higher binding affinities of glutathione-2-chloroacetamide conjugates to GST, compared to the reference glutathione-etacrynic acid complex, suggesting GST inhibition as a potential mechanism underlying their anticancer effects.

Conclusions. The synthesized 2-chloroacetamides demonstrate promising potential as anticancer agents, likely due to their ability to form inhibitory conjugates with glutathione, thereby affecting GST activity. These findings underline the importance of further studies to optimize these compounds for therapeutic use

Supporting Agency

  • This research was funded by the National Research Foundation of Ukraine Grant № 2023.05/0021 and Grant № 2023.03/0104

Author Biographies

Liubomyr Havryshchuk, Ivano-Frankivsk National Medical University

Assistant Professor

Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

Volodymyr Horishny, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Iryna Ivasechko, Institute of Cell Biology

PhD, Junior Researcher

Department of Regulation of Cell Proliferation and Apoptosis

Yuliia Kozak, Institute of Cell Biology

PhD, Junior Researcher

Department of Regulation of Cell Proliferation and Apoptosis

Dmytro Melnyk, Ivano-Frankivsk National Medical University

PhD, Associate Professor

Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

Dmytro Khylyuk, Medical University of Lublin

Assistant Professor

Department of Organic Chemistry

Myroslava Kusiy, Lviv State University of Life Safety

PhD, Associate Professor, Head of Department

Department of Applied Mathematics and Mechanics

Victoria Serhiyenko, Danylo Halytsky Lviv National Medical University

Doctor of Medical Sciences, Professor, Vice-Rector for Research

Nataliya Finiuk, Institute of Cell Biology

PhD, Researcher

Department of Regulation of Cell Proliferation and Apoptosis

Rostyslav Stoika, Institute of Cell Biology

Doctor of Biological Sciences, Professor, Corresponding Member of the National Academy of Sciences of Ukraine

Department of Regulation of Cell Proliferation and Apoptosis

Serhii Holota, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of Pharmaceutical, Organic and Bioorganic Chemistry

Roman Lesyk, University of Information Technology and Management in Rzeszow; Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical, Organic and Bioorganic Chemistry

References

  1. Bedard, P. L., Hyman, D. M., Davids, M. S., Siu, L. L. (2020). Small molecules, big impact: 20 years of targeted therapy in oncology. The Lancet, 395 (10229), 1078–1088. https://doi.org/10.1016/s0140-6736(20)30164-1
  2. Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T. et al. (2021). Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6 (1). https://doi.org/10.1038/s41392-021-00572-w
  3. Olgen, S. (2018). Overview on Anticancer Drug Design and Development. Current Medicinal Chemistry, 25 (15), 1704–1719. https://doi.org/10.2174/0929867325666171129215610
  4. Steinbrueck, A., Sedgwick, A. C., Brewster, J. T., Yan, K.-C., Shang, Y., Knoll, D. M. et al. (2020). Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews, 49(12), 3726–3747. https://doi.org/10.1039/c9cs00373h
  5. Zhang, J., Duan, D., Song, Z., Liu, T., Hou, Y., Fang, J. (2020). Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Medicinal Research Reviews, 41 (1), 342–394. https://doi.org/10.1002/med.21734
  6. Hassan, G. S., El-Messery, S. M., Al-Omary, F. A. M., El-Subbagh, H. I. (2012). Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs. Bioorganic & Medicinal Chemistry Letters, 22 (20), 6318–6323. https://doi.org/10.1016/j.bmcl.2012.08.095
  7. Padhariya, K. N., Athavale, M., Srivastava, S., Kharkar, P. S. (2019). Substituted chloroacetamides as potential cancer stem cell inhibitors: Synthesis and biological evaluation. Drug Development Research, 81 (3), 356–365. https://doi.org/10.1002/ddr.21628
  8. Demirci, S., Uslu, H., Mermer, A., Yesilay, G., Betul Aydin, Z. (2024). Synthesis and Characterization of Propofol‐Like Compounds, Anticancer Activities and Investigation of Their Anesthetic Effects by Molecular Docking. ChemistrySelect, 9 (17). https://doi.org/10.1002/slct.202400431
  9. Lesyk, R., Vladzimirska, O., Zimenkovsky, B., Golota, S., Nektgayev, I., Cherpak, O. et al. (2002). Synthesis and antiinflammatory activity of novel 3-(2,3-dimethyl-1-phenyl-4-pyrazolon-5-yl)-4-thiazolidones. Bollettino Chimico Farmaceutico, 141 (3), 197–201.
  10. Havryshchuk, L., Horishny, V., Rushchak, N., Lesyk, R. (2024). Dichloroacetic acid derivatives as potential anti-tumor and anti-inflammatory agents. ScienceRise: Pharmaceutical Science, 1 (47), 60–78. https://doi.org/10.15587/2519-4852.2024.299229
  11. Fumarola, C., Bozza, N., Castelli, R., Ferlenghi, F., Marseglia, G., Lodola, A. et al. (2019). Expanding the Arsenal of FGFR Inhibitors: A Novel Chloroacetamide Derivative as a New Irreversible Agent With Anti-proliferative Activity Against FGFR1-Amplified Lung Cancer Cell Lines. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00179
  12. Bogdanović, A., Marinković, A., Stanojković, T., Grozdanić, N., Janakiev, T., Cvijetić, I., Petrović, S. (2025). Synthesis, antimicrobial, anticancer activity, 3D QSAR, ADMET properties, and in silico target fishing of novel N,N-disubstituted chloroacetamides. Journal of Molecular Structure, 1321, 140075. https://doi.org/10.1016/j.molstruc.2024.140075
  13. Müller, M. P., Jeganathan, S., Heidrich, A., Campos, J., Goody, R. S. (2017). Nucleotide based covalent inhibitors of KRas can only be efficient in vivo if they bind reversibly with GTP-like affinity. Scientific Reports, 7 (1). https://doi.org/10.1038/s41598-017-03973-6
  14. Xiong, Y., Lu, J., Hunter, J., Li, L., Scott, D., Choi, H. G. et al. (2016). Covalent Guanosine Mimetic Inhibitors of G12C KRAS. ACS Medicinal Chemistry Letters, 8 (1), 61–66. https://doi.org/10.1021/acsmedchemlett.6b00373
  15. Hossain, M., Roayapalley, P. K., Sakagami, H., Satoh, K., Bandow, K., Das, U., Dimmock, J. R. (2022). Dichloroacetyl Amides of 3,5-Bis(benzylidene)-4-piperidones Displaying Greater Toxicity to Neoplasms than to Non-Malignant Cells. Medicines, 9 (6), 35. https://doi.org/10.3390/medicines9060035
  16. Fereidoonnezhad, M., Tabaei, S. M. H., Sakhteman, A., Seradj, H., Faghih, Z., Faghih, Z. et al. (2020). Design, synthesis, molecular docking, biological evaluations and QSAR studies of novel dichloroacetate analogues as anticancer agent. Journal of Molecular Structure, 1221, 128689. https://doi.org/10.1016/j.molstruc.2020.128689
  17. Zare, S., Ramezani, Z., Ghadiri, A. A., Fereidoonnezhad, M. (2023). Synthesis of N‐(2‐(tert‐Butylamino)‐2‐oxoethyl)‐2,2‐dichloro‐N‐aryl(alkyl)acetamides as Anticancer Agents: Molecular Modeling and Biological Evaluations. ChemistrySelect, 8 (1). https://doi.org/10.1002/slct.202203931
  18. Li, T., Yang, Y., Cheng, C., Tiwari, A. K., Sodani, K., Zhao, Y. et al. (2012). Design, synthesis and biological evaluation of N-arylphenyl-2,2-dichloroacetamide analogues as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters, 22 (23), 7268–7271. https://doi.org/10.1016/j.bmcl.2012.07.057
  19. Zhang, S.-L., Zhang, W., Xiao, Q., Yang, Z., Hu, X., Wei, Z., Tam, K. Y. (2016). Development of dichloroacetamide pyrimidines as pyruvate dehydrogenase kinase inhibitors to reduce cancer cell growth: synthesis and biological evaluation. RSC Advances, 6 (82), 78762–78767. https://doi.org/10.1039/c6ra14060b
  20. Trapella, C., Voltan, R., Melloni, E., Tisato, V., Celeghini, C., Bianco, S. et al. (2015). Design, Synthesis, and Biological Characterization of Novel Mitochondria Targeted Dichloroacetate-Loaded Compounds with Antileukemic Activity. Journal of Medicinal Chemistry, 59 (1), 147–156. https://doi.org/10.1021/acs.jmedchem.5b01165
  21. Zhang, S.-L., Hu, X., Zhang, W., Yao, H., Tam, K. Y. (2015). Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discovery Today, 20 (9), 1112–1119. https://doi.org/10.1016/j.drudis.2015.03.012
  22. Hossain, M., Roth, S., Dimmock, J. R., Das, U. (2022). Cytotoxic derivatives of dichloroacetic acid and some metal complexes. Archiv Der Pharmazie, 355 (11). https://doi.org/10.1002/ardp.202200236
  23. Yang, Y., Shang, P., Cheng, C., Wang, D., Yang, P., Zhang, F. et al. (2010). Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 45 (9), 4300–4306. https://doi.org/10.1016/j.ejmech.2010.06.032
  24. Abdel‐Latif, E., Fahad, M. M., El‐Demerdash, A., Ismail, M. A. (2020). Synthesis and biological evaluation of some heterocyclic scaffolds based on the multifunctional N‐(4‐acetylphenyl)‐2‐chloroacetamide. Journal of Heterocyclic Chemistry, 57 (8), 3071–3081. https://doi.org/10.1002/jhet.4012
  25. Zimenkovsky, B., Lesyk, R., Vladzimirska, O., Nektegayev, I., Golota, S., Chorniy, I. (1999). The structure – anti-inflammatory activity relationship among thiazolidones: Conclusion from scientific programme. Journal of Pharmacy and Pharmacology, 51, 264.
  26. Abdel-Latif, E., Fahad, M. M., Ismail, M. A. (2019). Synthesis ofN-aryl 2-chloroacetamides and their chemical reactivity towards various types of nucleophiles. Synthetic Communications, 50 (3), 289–314. https://doi.org/10.1080/00397911.2019.1692225
  27. Huang, F., Han, X., Xiao, X., Zhou, J. (2022). Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules, 27 (22), 7728. https://doi.org/10.3390/molecules27227728
  28. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R. et al. (2007). A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 11 (1), 37–51. https://doi.org/10.1016/j.ccr.2006.10.020
  29. Koltai, T., Fliegel, L. (2024). Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals, 17 (6), 744. https://doi.org/10.3390/ph17060744
  30. Alizadeh, S. R., Hashemi, S. M. (2021). Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Medicinal Chemistry Research, 30 (4), 771–806. https://doi.org/10.1007/s00044-020-02686-2
  31. Wan, Y., Long, J., Gao, H., Tang, Z. (2021). 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. European Journal of Medicinal Chemistry, 210, 112953. https://doi.org/10.1016/j.ejmech.2020.112953
  32. Mishchenko, M., Shtrygol’, S., Lozynskyi, A., Khomyak, S., Novikov, V., Karpenko, O. et al. (2021). Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Scientia Pharmaceutica, 89 (2), 22. https://doi.org/10.3390/scipharm89020022
  33. Geronikaki, A., Theophilidis, G. (1992). Synthesis of 2-(aminoacetylamino)thiazole derivatives and comparison of their local anaesthetic activity by the method of action potential. European Journal of Medicinal Chemistry, 27 (7), 709–716. https://doi.org/10.1016/0223-5234(92)90091-e
  34. Ivasechko, I., Yushyn, I., Roszczenko, P., Senkiv, J., Finiuk, N., Lesyk, D. et al. (2022). Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules, 27 (19), 6219. https://doi.org/10.3390/molecules27196219
  35. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J. et al. (2016). Gaussian 09, Revision A.02. Wallingford: Gaussian Inc.
  36. Dennington, R., Keith, T., Millam, J. (2016). GaussView 5.0.8. Shawnee Mission: Semichem Inc.
  37. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17 (5-6), 490–519. https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
  38. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4 (1). https://doi.org/10.1186/1758-2946-4-17
  39. Oakley, A. J., Lo Bello, M., Mazzetti, A. P., Federici, G., Parker, M. W. (1997). The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1‐1 in two different modes. FEBS Letters, 419 (1), 32–36. https://doi.org/10.1016/s0014-5793(97)01424-5
  40. Kramer, B., Rarey, M., Lengauer, T. (1999). Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins: Structure, Function, and Genetics, 37 (2), 228–241. https://doi.org/10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8
  41. Yusuf, D., Davis, A. M., Kleywegt, G. J., Schmitt, S. (2008). An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48 (7), 1411–1422. https://doi.org/10.1021/ci800084x
  42. Yushyn, I., Holota, S., Lesyk, R. (2022). 2,2-Dichloro-N-[5-[2-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrazol-2-yl]-2-oxoethyl]sulfanyl-1,3,4-thiadiazol-2-yl]acetamide. Molbank, 2022(1), M1328. https://doi.org/10.3390/m1328
  43. ADMETlab 3.0. Scbdd.com. Available at: https://admetlab3.scbdd.com/server/evaluation
  44. Ree, N., Göller, A. H., Jensen, J. H. (2024). Automated quantum chemistry for estimating nucleophilicity and electrophilicity with applications to retrosynthesis and covalent inhibitors. Digital Discovery, 3 (2), 347–354. https://doi.org/10.1039/d3dd00224a
  45. Yamane, D., Tetsukawa, R., Zenmyo, N., Tabata, K., Yoshida, Y., Matsunaga, N. et al. (2023). Expanding the Chemistry of Dihaloacetamides as Tunable Electrophiles for Reversible Covalent Targeting of Cysteines. Journal of Medicinal Chemistry, 66 (13), 9130–9146. https://doi.org/10.1021/acs.jmedchem.3c00737
  46. Coleman, S., Linderman, R., Hodgson, E., Rose, R. L. (2000). Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environmental Health Perspectives, 108 (12), 1151–1157. https://doi.org/10.1289/ehp.001081151
  47. Bernasinska, J., Duchnowicz, P., Koter-Michalak, M., Koceva-Chyla, A. (2013). Effect of safeners on damage of human erythrocytes treated with chloroacetamide herbicides. Environmental Toxicology and Pharmacology, 36 (2), 368–377. https://doi.org/10.1016/j.etap.2013.04.010
  48. Jablonkai, I., Dutka, F. (1992). Preparative-scale synthesis and physicochemical properties of cysteine and glutathione conjugates of chloroacetamides. Journal of Agricultural and Food Chemistry, 40 (3), 506–508. https://doi.org/10.1021/jf00015a029
  49. Ma, X., Zhang, Y., Guan, M., Zhang, W., Tian, H., Jiang, C. et al. (2021). Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and in vivo. International Journal of Molecular Medicine, 47 (6). https://doi.org/10.3892/ijmm.2021.4936
  50. Ploemen, J. H. T. M., Ommen, B. V., Bogaards, J. J. P., Van Bladeren, P. J. (1993). Ethacrynic acid and its glutathione conjugate as inhibitors of glutathioneS-transferases. Xenobiotica, 23 (8), 913–923. https://doi.org/10.3109/00498259309059418
  51. Burgess, E. R., Mishra, S., Yan, X., Guo, Z., Geden, C. J., Miller, J. S., Scharf, M. E. (2024). Differential interactions of ethacrynic acid and diethyl maleate with glutathione S-transferases and their glutathione co-factor in the house fly. Pesticide Biochemistry and Physiology, 205, 106170. https://doi.org/10.1016/j.pestbp.2024.106170
  52. Emre Erat, Y., Rümeysa Erat, A., Erat, M. (2023). Inhibitory Effect of Ascorbic Acid on Glutathione S-transferase from Human Erythrocytes. Current Enzyme Inhibition, 19 (3), 188–194. https://doi.org/10.2174/1573408019666230530095315
  53. Hellou, J., Ross, N. W., Moon, T. W. (2012). Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environmental Science and Pollution Research, 19 (6), 2007–2023. https://doi.org/10.1007/s11356-012-0909-x
  54. Tew, K. D. (2016). Glutathione-Associated Enzymes In Anticancer Drug Resistance. Cancer Research, 76 (1), 7–9. https://doi.org/10.1158/0008-5472.can-15-3143
  55. Mahajan, S., Atkins, W. M. (2005). The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cellular and Molecular Life Sciences, 62 (11), 1221–1233. https://doi.org/10.1007/s00018-005-4524-6
  56. Townsend, D. M., Tew, K. D. (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 22 (47), 7369–7375. https://doi.org/10.1038/sj.onc.1206940
  57. Gülçin, İ., Scozzafava, A., Supuran, C. T., Akıncıoğlu, H., Koksal, Z., Turkan, F., Alwasel, S. (2015). The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (6), 1095–1101. https://doi.org/10.3109/14756366.2015.1094470
  58. Ozgencli, I., Kilic, D., Guller, U., Ciftci, M., Kufrevioglu, O. I., Budak, H. (2019). A Comparison of the Inhibitory Effects of Anti-Cancer Drugs on Thioredoxin Reductase and Glutathione S-Transferase in Rat Liver. Anti-Cancer Agents in Medicinal Chemistry, 18 (14), 2053–2061. https://doi.org/10.2174/1871520618666180910093335
Synthesis, anticancer properties evaluation and in silico studies of 2-chloro- and 2,2-dichloroacetamides bearing thiazole scaffolds

Downloads

Published

2025-02-28

How to Cite

Havryshchuk, L., Horishny, V., Ivasechko, I., Kozak, Y., Melnyk, D., Khylyuk, D., Kusiy, M., Serhiyenko, V., Finiuk, N., Stoika, R., Holota, S., & Lesyk, R. (2025). Synthesis, anticancer properties evaluation and in silico studies of 2-chloro- and 2,2-dichloroacetamides bearing thiazole scaffolds. ScienceRise: Pharmaceutical Science, (1 (53), 71–82. https://doi.org/10.15587/2519-4852.2025.323594

Issue

Section

Pharmaceutical Science