The influence of polyols on the bacteriotropic properties of the Lactobacillus reuteri cell-free superants

Authors

  • O.V Knysh Mechnikov Institute of Microbiology and Immunology,
  • A.V. Martynov Mechnikov Institute of Microbiology and Immunology,
  • Yu.V. Voyda Kharkiv Medical Academy of Postgraduate Education,
  • Ye.M. Babych Mechnikov Institute of Microbiology and Immunology,

Keywords:

polyols, Lactobacillus reuteri, cell-free, supernats

Abstract

Introduction. Precursor directed biosynthesis is one of the promising approaches to finding new antimicrobial agents and creating next-generation probiotics. L. reuteri is capable to convert triatomic polyol glycerol into reuterine, a broad-spectrum antimicrobial substance. There are no data on the use of other polyols as precursors. The aim of the research was to investigate the effect of cell-free supernatants obtained by culturing L. reuteri DSM 17938 in its own disintegrate, supplemented with polyols (xylitol, sorbitol, mannitol and glycerol & glucose) on the daily biomass growth of opportunistic microorganisms. Material & methods. Reference strains Staphylococcus aureus ATCC 25923; Escherichia coli AТСС 25922 and Pseudomonas aeruginosa clinical isolate were used as a test cultures. The effect of the lactobacillus supernatant on the daily biomass growth of the test cultures was investigated by spectrophotometry using a 96-well polystyrene microtiter plates and a «LisaScanEM» spectrophotometer («ErbaLachemas.r.o.», Czech Republic). The final concentration of supernatants in the incubation medium was 30%, and the final concentration of bacterial cells was ~106 CFU/ml. Inhibition (II) or stimulation (SI) indices of the daily biomass growth of test cultures by formula were calculated. Results & discussion. Supplementation of culture medium with glycerol & glucose during L. reuteri cultivation resulted in the S. aureus (II = 70.7%), Escherichia coli (II = 72.2%) and P. aeruginosa (II = 74.7%) daily biomass growth inhibition. As a result of L. reuteri cultivation in its own disintegrate supplemented with mannitol, the supernatant acquired growth-promoting properties with respect to S. aureus (SI = 45.5%), E. coli (SI = 19.1%) and P. aeruginosa (SI = 19, 9%). The supernatant obtained after L. reuteri cultivation in disintegrate supplemented with sorbitol had no significant effect on the S. aureus and Escherichia coli daily biomass growth, but significantly stimulated the growth of P. aeruginosa (SI = 29.4%). The supernatant of L. reuteri, cultured in disintegrate supplemented with xylitol had no effect on staphylococcus growth, inhibited of E. coli (II = 16.5%) growth and increased of P. aeruginosa (SI = 19.1%) daily biomass growth. The data obtained for glycerol, the introduction of which into the culture medium of L. reuteri led to the appearance of inhibitory activity of the supernatant against all test cultures, were expected. They coincide with the results of studies by other authors and are associated with the ability of this type of lactobacilli to convert glycerol into a broad-spectrum antimicrobial substance reuterin. The results of the study confirm that xylitol, sorbitol and mannitol do not undergo fermentation with the formation of acidic end products during the cultivation of L. reuteri. These polyols remain either unchanged or undergo slight modification in the composition of the supernatant and have different effects on the daily biomass growth of test cultures. Conclusion. The results of the study showed that the use of xylitol, sorbitol and mannitol as precursors, and L. reuteri DSM 17938 as a biotransformer system in the development of new antimicrobials using a precursor-directed biosynthesis strategy is ineffective. They also confirmed that the supernatant obtained after cultivation of L. reuteri DSM 17938 in its own disintegrate supplemented with glycerol & glucose, has a pronounced inhibitory activity against the investigated opportunistic microorganisms.

References

Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology, 9, 757. doi:10.3389/fmicb.2018.00757

Britton, R. A. (2017). Lactobacillus reuteri. In The Microbiota In Gastrointestinal Pathophysiology (pp. 89-97). Academic Press, London. doi: 10.1016/B978-0-12-804024-9.00008-2

De Weirdt, R., Crabbé, A., Roos, S., Vollenweider, S., Lacroix, C., van Pijkeren, J. P., Britton, R. A., Sarker, Sh., Van de Wiele, T., & Nickerson, C. A. (2012). Glycerol supplementation enhances L. reuteri’s protective effect against S. typhimurium colonization in a 3-D model of colonic epithelium. PLoS ONE, 7(5), e37116. doi:10.1371/journal.pone.0037116

Spinler, J. K., Auchtung, J., Brown, A., Boonma, P., Oezguen, N., Ross, C. L., Luna, R. A., Runge, J., Versalovic, J., Peniche, A., Dann, S. M., Britton, R. A., Haag, A., & Savidge, T. C. (2017). Next-generation probiotics targeting Clostridium difficile through precursor-directed antimicrobial biosynthesis. Infection and Immunity, 85(10), e00303-17. doi:10.1128/iai.00303-17

Gul, P., Akgul, N., & Seven, N. (2018). Anticariogenic potential of white cheese, xylitol chewing gum, and black tea. European Journal of Dentistry, 12(2), 199–203. doi:10.4103/ejd.ejd_4_18

Chen, X., Jiang, Z.-H., Chen, S., & Qin, W. (2010). Microbial and bioconversion production of D-xylitol and its detection and application. International Journal of Biological Sciences, 6(7), 834–844. doi:10.7150/ijbs.6.834

Sarmiento-Rubiano, L. A., Zúñiga, M., Pérez-Martínez, G., & Yebra, M. J. (2007). Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Research in Microbiology, 158(8-9), 694–701. doi:10.1016/j.resmic.2007.07.007

Dufossé, L., & Fouillaud, M. (2019). Editorial: Microbial biotechnology providing bio-based components for the food industry. Frontiers in Microbiology, 10, 16. doi:10.3389/fmicb.2019.02843

Ortiz, M. E., Bleckwedel, J., Fadda, S., Picariello, G., Hebert, E. M., Raya, R. R., & Mozzi, F. (2017). Global analysis of mannitol 2-dehydrogenase in Lactobacillus reuteri CRL 1101 during mannitol production through enzymatic, genetic and proteomic approaches. PLOS ONE, 12(1), e0169441. doi:10.1371/journal.pone.0169441

Yang, H., Li, J., Du, G., & Liu, L. (2017). Microbial production and molecular engineering of industrial enzymes: challenges and strategies. In Biotechnology of Microbial Enzymes (pp. 151-165). Academic Press. doi:10.1016/b978-0-12-803725-6.00006-6

Hedberg, M., Hasslöf, P., Sjöström, I., Twetman, S., & Stecksén-Blicks, C. (2008). Sugar fermentation in probiotic bacteria – an in vitro study. Oral Microbiology and Immunology, 23(6), 482–485. doi:10.1111/j.1399-302x.2008.00457.x

Knysh, O. V., Isaenko, O. Y., Babych, E. M., Kompaniets, A. M., Pakhomov, O. V., Polyanska, V. P., Zachepylo, S.V., & Danilova І.S. (2018). Antimicrobial activity of bifidobacteria derivatives after storage in a frozen state. Problems of Cryobiology and Cryomedicine, 28(3), 237–248. doi:10.15407/cryo28.03.237

Kozlova, Y. N., Fomenko, N. V., Morozova, V. V., Saranina, I. V., Tikunov, A. Y., Ganichev, D. A., Samokhin, A. G., Pavlov, V. V., Rozhnova, O. M., Bondar’, I. A., Zenkova, E. V., Nimaev, V. V., Klimontov, V. V., & Tikunova, N. V. (2017). Genetic and biochemical characterization of staphylococci occurring in Novosibirsk, Russia. Vavilov Journal of Genetics and Breeding, 21(8), 952–958. doi:10.18699/vj17.318

Ferreira, A. S., Barbosa, N. R., Júnior, D. R., & da Silva, S. S. (2009). In vitro mechanism of xylitol action against Staphylococcus aureus ATCC 25923. In Current Research Topics in Applied Microbiology and Microbial Biotechnology (pp. 505-509). doi:10.1142/9789812837554_0105

Moore, J. E., Rendall, J. C., & Downey, D. G. (2015). Pseudomonas aeruginosa displays an altered phenotype in vitro when grown in the presence of mannitol. British Journal of Biomedical Science, 72(3), 115–119. doi:10.1080/09674845.2015.11666807

Sousa, L. P. de, Silva, A. F. da, Calil, N. O., Oliveira, M. G., Silva, S. S. da, & Raposo, N. R. B. (2011). In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol. Brazilian Archives of Biology and Technology, 54(5), 877–884. doi:10.1590/s1516-89132011000500004

Silva, A. F. da, Suzuki, É. Y., Ferreira, A. S., Oliveira, M. G., Silva, S. S. da, & Raposo, N. R. B. (2011). In vitro inhibition of adhesion of Escherichia coli strains by Xylitol. Brazilian Archives of Biology and Technology, 54(2), 235–241. doi:10.1590/s1516-89132011000200003

Ng, S.-F., & Leow, H.-L. (2015). Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections. Drug Development and Industrial Pharmacy, 41(11), 1902–1909. doi:10.3109/03639045.2015.1019888

Downloads

How to Cite

Knysh, O., Martynov, A., Voyda, Y., & Babych, Y. (2020). The influence of polyols on the bacteriotropic properties of the Lactobacillus reuteri cell-free superants. Annals of Mechnikov’s Institute, (1), 27–31. Retrieved from https://journals.uran.ua/ami/article/view/199385

Issue

Section

Research Articles