Immunoprophylaxis of pseudomonosis: achievements and perspectives

Authors

  • N Gorodnitskaya Mechnikov Institute of Microbiology and Immunology,
  • L Gabysheva Kharkov National Medical University,
  • S Derkach Mechnikov Institute of Microbiology and Immunology,
  • A Martynov Mechnikov Institute of Microbiology and Immunology,

Keywords:

pseudomonosis, vaccines, development, protective properties

Abstract

The review article presents a retrospective analysis of attempts to develop effective vaccines for pseudomonas prophylaxis. P. aeruginosa vaccine has been sought for 40 years; however it is still not available. The increased understanding of P. aeruginosa pathogenesis and its virulence factors supported the recognition of potential immunogens and passive immunotherapy that could be used for the development of an effective vaccine. These immunogens are situated in structural components such as lipolysaccharides, pili, flagella, outer membrane proteins or are part of secreted products such as proteases, exotoxins and mucoid exopolysaccharides. There have been significant advances in later years; nonetheless there is clear need for additional basic research to further increase the understanding of those elements of immune response to P. aeruginosa. Recently, the antigenic drift of the P. aeruginosa actual strains has changed significantly, and no one has studied such changes in Ukraine, despite the high mortality from pseudomonas in the intensive care unit. The development of a multi-strain vaccine based on the actual strains of P. aeruginosa, in our opinion, can significantly reduce the formation of nosocomial circulation of multidrug-resistant strains, and contribute to reducing morbidity and mortality rates from nosocomial pseudomonosis.

References

Korovina NA, Lepiseva IV, Zaplatnikova LV, et al. Efficacy of topical immunotherapy with bacterial lysates in frequently ill children. Pediatrics. 2009. Vol.87. N. 5. P. 104-109.

Savenkova MS, Afanasyeva AA, Minasyan VS, Tyurkina SI Prevention and treatment of respiratory diseases in frequently ill children with topical bacterial lizates. Questions of modern pediatrics. 2009. Vol. 8. № 6. P.18-25.

Shamsheva OV, Zvereva N. N. Therapeutic and preventive efficacy of the complex topical immunomodulator in acute respiratory infections. Questions of modern pediatrics. 2011. Vol. 10. №. 1. P. 67-69.

Stanislavsky E.S. Vaccines against Pseudomonas aeruginosa infection: results and prospects of research. Bacterial antigens. Collection of works. M. 1982. P.3-14.

Stanislavsky E. S., Joo I., Mashilova G. M. et al. Vaccines against Pseudomonas aeruginosa infection: 1. Experimental studies . Vaccine. 1985. Vol. 3. № 2. P. 128–136.

Poon K. K., Westman, E.L.,Vinogradov E., et al. Functional characterization of MigA and WapR: Putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J. Bacteriol. 2008. Vol. 190. № 6. P. 1857–1865.

Erridge C., Stewart J., Bennett-Guerrero E., et al. The biological activity of a liposomal complete core lipopolysaccharide vaccine. J. Endotoxin Res. 2002. Vol. 8. №1. P. 39–46.

Pier G. B., DesJardin D., Grout M., et al. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine. Infect. Immunity. 1994. Vol. 62. № 9. P. 3972-3979.

Bystrova O.V., Knirel Y.A., Lindner B., Kocharova , et al. Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains of Pseudomonas aeruginosa O-serogroups. FEMS Immunol. Med. Microbiol. 2006.Vol. 46. № 1. P. 85–99.

Pier G. B. Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen. Carbohyd. Res. 2003. Vol. 338. № 23. P. 2549–2556.

Kashef N., Behzadian-Nejad Q., Najar-Peerayeh S., et al. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate. J. Med. Microbiol. 2006. Vol. 55. № 10. P.1441-1446.

Zuercher A. W., Horn M. P., Que J. U. et al. Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis. FEMS Immunol. Med. Microbiol. 2006. Vol. 47. № 2. P. 302–308.

Lang A. B., Rudeberg A., Schoni M.H., et al. Vaccination of cystic fibrosis patients against Pseudomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediat. Infect. Dis. J. 2004. Vol. 23. № 6. P. 504–510.

Hogardt M., Heesemann J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int. J. Med. Microbiol. 2010. Vol. 300. № 8. P. 557–562.

Krause A., Whu W. Z., Xu Y., et al. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine. 2011. Vol. 29. №11. P.2131–2139.

Pedersen S.S. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS. Supplementum. 1992. № 28. P. 1–79.

Yushkova N.A., Kholodkova E.V., Korobova T. S., et al. Serologic and protective cross-reactivity of antisera to Pseudomonas aeruginosa extracellular slime glycolipoprotein. Acta Microbiol. Hungarica. 1986. Vol. 33. № 2. P. 147–156.

Theilacker C., Coleman F.T., Mueschenborn S., et al. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect. Immunity. 2003.Vol. 71. № 7. P. 3875–3884.

Campodonico V. L., Llosa N. J., Bentancor L.V., et al. Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect. Immunity. 2011. Vol. 79. № 8. P. 3455–3464.

Arora S. K., Neely A.N., Blair B., et al. Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immunity. 2005. Vol. 73. № 7. P. 4395–4398.

Saha S., Takeshita F., Matsuda T., Jounai, et al. Blocking of the TLR5 activation domain hampers protective potential of flagellin DNA vaccine. J. Immunol. 2007. Vol. 179. № 2. P. 1147–1154.

Rosok M. J., Stebbins M. R., Connelly K., et al. Generation and characterization of murine antiflagellum monoclonal antibodies that are protective against lethal challenge 958. Current Pharmaceutical Biotechnology. 2013. Vol. 14. No. 11. P. 3819–3828.

Tart A. H., Blanks M. J., Wozniak, D. J. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J. Bacteriol. 2006. Vol. 188. № 18. P. 6483–6489.

Doring G., Meisner C., Stern M. Flagella Vaccine Trial Study, G. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Nat. Acad. Sci. USA. 2007. Vol. 104. № 26. P. 11020–11025.

Holder I. A., Naglich J.G. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: Immunization using divalent flagella preparations. J. Trauma. 1986. Vol. 26. № 2. P. 118–122.

Feldman M., Bryan R., Rajan S., et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immunity. 1998. Vol. 66. № 1. P. 43–51.

Rudner X.L., Hazlett L.D., Berk R.S. Systemic and topical protection studies using Pseudomonas aeruginosa flagella in an ocular model of infection. Curr. Eye Res. 1992. Vol. 11. № 8. P. 727–738.

Crowe B.A., Enzersberger O., Schober-Bendixen S., et al. The first clinical trial of immuno's experimental Pseudomonas aeruginosa flagellar vaccines. Antib. Chemother. 1991. № 44. P. 143–156.

Honko A.N., Mizel S.B. Mucosal administration of flagellin induces innate immunity in the mouse lung. Infect. Immunity. 2004. Vol. 72. № 11. P. 6676–6679.

Campodonico V.L., Llosa, N.J., Grout M., et al. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect. Immunity. 2010. Vol. 78. № 2. P. 746–755.

Castric P.A., Deal C.D. Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect. Immunity. 1994. Vol. 62. № 2. P. 371–376.

Spangenberg C., Fislage R., Sierralta W., et al. Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiol. Lett. 1995. Vol 127. № 1–2. P. 158.

Audette G.F., Irvin R.T., Hazes B. Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry. 2004. Vol. 43. № 36. P. 11427–11435.

Kao D.J., Churchill M.E., Irvin R.T., Hodges R.S. Animal protection and structural studies of a consensus sequence vaccine targeting the receptor binding domain of the type IV pilus of Pseudomonas aeruginosa. J. Mol. Biol. 2007. Vol. 374. № 2. P. 426–442.

Cachia P.J., Glasier L.M., Hodgins R.R., et al. The use of synthetic peptides in the design of a consensus sequence vaccine for Pseudomonas aeruginosa. J. Peptide Res.: Official J. Am. Peptide Soc. 1998. Vol. 52. № 4. P. 289–299.

Kao D.J., Hodges R.S. Advantages of a synthetic peptide immunogen over a protein immunogen in the development of an anti-pilus vaccine for Pseudomonas aeruginosa. Chem. Biol. Drug Design. 2009. Vol. 74. № 1. P 33–42.

Hertle R., Mrsny R., Fitzgerald D.J. Dual-function vaccine for Pseudomonas aeruginosa: characterization of chimeric exotoxin Apilin protein. Infect. Immunity. 2001. Vol. 69. № 11. P. 6962–6969.

Horzempa J., Held T.K., Cross A.S., et al. Immunization with a Pseudomonas aeruginosa 1244 pilin provides O-antigen-specific protection. Clin. Vaccine Immunol.: CVI. 2008. Vol. 15. № 4. P. 590–597.

Dacheux D., Goure J., Chabert J., et al. Poreforming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol.Microbiol. 2001. Vol. 40. № 1. P. 76–85.

Dacheux D., Toussaint B., Richard M., et al. Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect. Immunity. 2000. Vol. 68. № 5. P. 2916–2924.

Sawa T., Yahr T.L., Ohara M., et al. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat. Med. 1999. Vol. 5. № 4. P. 392– 398.

Holder I. A. Pseudomonas vaccination and immunotherapy: an overview. J. Burn Care Rehabilitat. 2001. Vol. 22. № 5. P. 311–320.

Faure K., Fujimoto J., Shimabukuro D.W., et al. Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosainduced acute lung injury in a rat model. J. Immune Based Therap. Vaccines. 2003. Vol. 1. № 1. P. 2.

Gebus C., Faudry E., Bohn Y.S., et al. Oligomerization of PcrV and LcrV, protective antigens of Pseudomonas aeruginosa and Yersinia pestis. J. Biological Chem. 2008. Vol. 283. № 35. P. 23940–23949.

Markham A.P., Barrett B.S., Esfandiary R., et al. Formulation and immunogenicity of a potential multivalent type III secretion system-based protein vaccine. J. Pharm. Sci. 2010. Vol. 99. № 11. P. 4497–4509.

Francois B., Luyt C. E., Dugard A., et al. Safety and pharmacokinetics of an antiPcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized,double-blind, placebo-controlled trial. Crit. Care Med. 2012. Vol. 40. № 8. P. 2320–2326.

Donnelly J. J., Ulmer J. B., Shiver J.W., Liu M. A. DNA vaccines. Ann. Rev. Immunol. 1997. № 15. P. 617–648.

Wilson J. M. Adenoviruses as gene-delivery vehicles. New Eng. J. Med. 1996. Vol. 334. № 18. P. 1185–1187.

Sharma A., Krause A., Xu Y., et al. Adenovirus-based vaccine with epitopes incorporated in novel fiber sites to induce protective immunity against Pseudomonas aeruginosa. PloS One. 2013. Vol. 8. №2. P. 956–996.

Lanzi A., Ben Youssef G., Perricaudet M., Benihoud K. Antiadenovirus humoral responses influence on the efficacy of vaccines based on epitope display on adenovirus capsid. Vaccine. 2011. Vol. 29. № 7. P. 1463–1471.

Krause A., Joh J.H., Hackett N.R., et al. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity. J. Virol. 2006. Vol. 80. № 11. P. 5523–5530.

Saxena M., Van T. T., Baird F. J., et al. Preexisting immunity against vaccine vectors-friend or foe? Microbiol. 2013. Vol. 159. № 1. P. 1–11.

Gurwith M., Lock M., Taylor E.M., et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: Arandomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect. Dis. 2013. Vol. 13. № 3. P. 238–250.

Kuschner R. A., Russell K. L., Abuja M., et al. Adenovirus Vaccine Efficacy Trial, C. A phase 3, randomized, double-blind, placebocontrolled study of the safety and efficacy of the live, oral adenovirus type 4 and type 7 vaccine, in U.S. military recruits. Vaccine. 2013. Vol. 31. № 28. P. 2963–2971.

Homma J. Y. Roles of exoenzymes and exotoxin in the pathogenicity of Pseudomonas aeruginosa and the development of a new vaccine. Jpn J. Exp. Med. 1980. Vol. 50. № 3. P. 149–165.

В. В. Смирнов, Е. А. Куприанова. Бактерии рода Pseudomonas. Институт микробиологии и вирусологии им. Д. К. Заболотного. К.: Наукова думка. 1990. 262 c.

Cross A. S., Sadoff J. C., Iglewski H. B., Sokol P. A. Evidence for the role of toxin A in the pathogenesis of infection with Pseudomonas aeruginosa in humans. Infect Dis. 1980. Vol. 142. № 4. P. 538–546.

Pier G. B. Is Pseudomonas aeruginosa exotoxin A a good carrier protein for conjugate vaccines? Hum. Vaccin. 2007. Vol. 3. № 2. P. 39–40.

Cryz Jr S. J., Friedman R. L., Pavlovskis O. R. et. al. Effect of formalin toxoiding on Pseudomonas aeruginosa toxin A: biological, chemical, and immunochemical studies . Infect Immun. 1981. Vol. 32. № 2. P. 759–768.

Mikhailova N. A., Vertiev Iu. V., Kaloshin A. A., Isakov M. A. Study of protective properties of recombinant atoxic form of exotoxin A and recombinant outer membrane protein F of Pseudomonas aeruginosa. Zh. Mikrobiol. Epidemiol. Immunobiol. 2010. № 2. P. 39 – 44.

Pavlovskis O. R., Pollack M., Callahan L. T., Iglewski B. H. Passive protection by antitoxin in experimental Pseudomonas aeruginosa burn infections. Infect. Immun. 1977. № 18. P. 596–602.

Shiau J.W., Tang T. K., Shih Y. L., et al. Mice immunized with DNA encoding a modified Pseudomonas aeruginosa exotoxin A develop protective immunity against exotoxin intoxication. Vaccine. 2000. Vol. 19. № 9–10. P. 1106–1112.

Tanomand A., Farajnia S., Najar Peerayeh S., et al. Cloning, expression and characterization of recombinant exotoxin A flagellin fusion protein as a new vaccine candidate against Pseudomonas aeruginosa infections. Iran. Biomed. J. 2013. Vol. 17. № 1. P. 1–7.

Mutharia L. M., Hancock R. E. Surface localization of Pseudomonas aeruginosa outer membrane porin protein F by using monoclonal antibodies. Infect. Immunity. 1983. Vol. 42. № 3. P. 1027–1033.

Mutharia L. M., Nicas, T. I., Hancock R. E. Outer membrane proteins of Pseudomonas aeruginosa serotype strains. J. Infect. Dis. 1982. Vol. 146. № 6. P. 770–779.

Mansouri E., Gabelsberger J., Knapp B., et al. Safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. Infect. Immunity. 1999. Vol. 67. № 3. P. 1461–1470.

Baumann U., Gocke K., Gewecke B., et al. Assessment of pulmonary antibodies with induced sputum and bronchoalveolar lavage induced by nasal vaccination against Pseudomonas aeruginosa: a clinical phase I/II study. Respiratory Res. 2007. № 8. P. 57.

Gocke K., Baumann U., Hagemann H., et al. Mucosal vaccination with a recombinant OprF-I vaccine of Pseudomonas aeruginosa in healthy volunteers: comparison of a systemic vs. a mucosal booster schedule. FEMS Immunol. Med. Microbiol. 2003. Vol. 37. № 2–3. P. 167-–171.

Sorichter S., Baumann U., Baumgart A., et al. Immune responses in the airways by nasal vaccination with systemic boosting against Pseudomonas aeruginosa in chronic lung disease. Vaccine. 2009. Vol. 27. № 21. P. 2755–2759.

Ding B., von Specht B.U., Li Y. OprF/I-vaccinated sera inhibit binding of human interferon-gamma to Pseudomonas aeruginosa. Vaccine. 2010. Vol. 28. № 25. P. 4119–4122.

Chen J.G., Su Z. L., Liu Y.Z., et al. Construction of MyD88-Pseudomonas aeruginosa epitope DNA vaccine and its expression in eukaryotic cells. Chinese J. Cellular Mol. Immunol. 2009. Vol. 25. № 3. P. 193–195.

Weimer E.T., Lu H., Kock N.D., et al. A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid P. aeruginosa. Vaccine Current Pharmaceutical Biotechnology. 2013. Vol. 14. № 11. P. 959

Worgall S., Krause A., Qiu, J., et al. Protective immunity to Pseudomonas aeruginosa induced with a capsid-modified adenovirus expressing P. aeruginosa OprF. J. Virol. 2007. Vol. 81. № 24. P. 13801–13808.

Gilleland H.E., Gilleland, L.B., Staczek, J., et al. Chimeric animal and plant viruses expressing epitopes of outer membrane protein F as a combined vaccine against Pseudomonas aeruginosa lung infection. FEMS Immunol. Med. Microbiol. 2000. Vol. 27. № 4. P. 291–297.

Peluso L., de Luca C., Bozza S., et al. Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization. BMC Microbiol. 2010. № 10. P. 9.

Gilleland H. E., Jr., Parker M. G., Matthews J. M. et al. Use of a purified outer membrane protein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccine in mice .Infect. Immun. 1984. № 44. P.49–54.

Pressler T., Pedersen S. S., Espersen F. et al. IgG subclass antibody responses to alginate from Pseudomonas aeruginosa in patients with cystic fibrosis and chronic P. aeruginosa infection. Pediatric Pulmonology. 1992. Vol. 14. № 1. P. 44–51.

Theilacker C., Coleman F. T., Mueschenborn S. et al. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect Immun. 2003. Vol. 71. № 7. P. 3875–3884.

Theilacker C., Coleman F. T., Mueschenborn S. et al. The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol. 2004. Vol. 347. № 1. P.121–134.

Gatypova EV, Zlygostev SA, Kaloshin A. et al. Production of the recombinant protein and outer membrane of Pseudomonas aeruginosa and evaluation of its antigenic properties. Journal of Microbiology, Epidemiology and Immunobiology. 2008. №. 6. P. 50-53.

Morozova NS Problems and prospects of nonspecific prevention of nosocomial infections. Problems of medical science are those. 2004. № 4. P. 5-8.

Saha S., Takeshita F., Sasaki S. et al. Multivalent DNA vaccine protects mice against pulmonary infection caused by Pseudomonas aeruginosa . Vaccine. 2006. Vol. 24. № 37. P. 6240–6249.

Hackbarth C., Hodges R. S. Synthetic peptide vaccine development: designing dual epitopes into a single pilin peptide immunogen generates antibody cross-reactivity between two strains of Pseudomonas aeruginosa. Chem. Biol. Drug. Des. 2010. Vol. 76. № 4. P. 293–304.

Gorodnitskaya NI Optimization of Pseudomonas aeruginosa strains cultivation, promising for biotechnology: Abstract of thesis. dis. for degr. Ph.D. in med: spec. 03.00.07 "Microbiology". H. 2012. 21 pp.

Shchetinina VN Extracellular antigens of Pseudomonas aeruginosa. Microb. journal. 1985. Vol. 47. № 6. P. 36-40.

Shchetinina VN Extracellular substances Pseudomonas aeruginosa and their biological properties: the author's abstract. dis. for academic competition. degr. Ph.D. in biol. 03.00.07 "Microbiology". K. 1986. 22 C.

Shinkarenko AA Isolation of the protein antigen from the cell membrane of the Pseudomonas aeruginosa. Topical issues of microbiology, epidemiology and immunology of infectious diseases: Abstracts of Sc. Conf. Kharkiv. 1987. pp. 49-50.

Shinkarenko AA, Podgornaya LG, Shchetinina VN et al. Some physical and chemical characteristics of the Pseudomonas toxoid. Microb. journal. 1986. Vol. 48. No. 6. P. 29-31.

Podgornaya LG G. Pseudomonas aeruginosa anatoxin. Preparations for specific prevention, diagnosis and treatment of diseases caused by opportunistic bacteria: Sat. theses of the All-Union Symposium. M. 1978. P. 42-43.

Cripps A.W., Dunkley M. L., Clancy R. L. Mucosal and systemic immunizations with killed Pseudomonas aeruginosa protect against acute respiratory infection in rats. Infect. Immunity. 1994. Vol. 62. № 4. P. 1427–1436.

Dunkley M. L., Rajyaguru S., McCue A., et al. Pseudomonas aeruginosa-specific IgG1 and IgG2 subclasses in enhancement of pulmonary clearance following passive immunisation in the rat. FEMS Immunol. Med. Microbiol. 2003. Vol. 39. № 1. P. 37–44.

Cripps A.W., Dunkley M. L., Clancy R.L., Kyd J. Vaccine strategies against Pseudomonas aeruginosa infection in the lung. Behring Institute Mitteilungen. 1997. № 98. P. 262–268.

Cripps A.W., Peek K., Dunkley M., et al. Safety and immunogenicity of an oral inactivated whole-cell Pseudomonas aeruginosa vaccine administered to healthy human subjects. Infect. Immunity. 2006. Vol. 74. № 2. P. 968–974.

Priebe G.P., Brinig M.M., Hatano K., et al. Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect. Immunity. 2002. Vol. 70. № 3. P. 1507–1517.

Doring G., Parameswaran I.G., Murphy T.F. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol. Rev. 2011. Vol. 35. № 1. P. 124–146.

Priebe G.P., Meluleni G.J., Coleman F.T., et al. Protection against fatal Pseudomonas aeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant. Infect. Immunity. 2003. Vol. 71. № 3. P. 1453–1461.

Zaidi T.S., Priebe G. P., Pier G. B. A live-attenuated Pseudomonas aeruginosa vaccine elicits outer membrane protein-specific active and passive protection against corneal infection. Infect. Immunity. 2006. Vol. 74. № 2. P. 975–983.

Tertilt C., Joh J., Krause A., et al. Expression of B-cell activating factor enhances protective immunity of a vaccine against Pseudomonas aeruginosa. Infect. Immunity. 2009. Vol. 77. № 7. P. 3044–3055.

Roe E. A., Jones R.J. Immunization of burned patients against Pseudomonas aeruginosa infection at Safdarjang Hospital, New Delhi. Rev. Infect. Dis. 1983. Vol. 5. № 5. P. 922–930.

Donta S.T., Peduzzi P., Cross, A.S., et al. Immunoprophylaxis against klebsiella and Pseudomonas aeruginosa infections. The Federal Hyperimmune Immunoglobulin Trial Study Group. J. Infect. Dis. 1996. Vol. 174. № 3. P. 537–543.

Secher T., Fauconnier L., Szade A., et al. Anti-Pseudomonas aeruginosa serotype O11 LPS immunoglobulin M monoclonal antibody panobacumab (KBPA101) confers protection in a murine model of acute lung infection. J. Antimicrob. Chemother. 2011. Vol. 66. № 5. P. 1100–1109.

Lazar H., Horn M. P., Zuercher A. W., et al. Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers. Antimicrob. Agents Chemother. 2009. Vol. 53. № 8. P. 3442–3446.

Ahmadi H., Tabaraie B., Maleknia S., et al. Immunological evaluation of OMP-F of native Iranian Pseudomonas aeruginosa as a protective vaccine. J. Infect. Develop. Countries. 2012. Vol. 6. № 10. P. 721–726.

Shang H.F., Yeh M. L., Lin C.P., et al. Characterization of monoclonal antibody B7, which neutralizes the cytotoxicity of Pseudomonas aeruginosa exotoxin A. Clin. Diagnos. Lab. Immunol. 1996. Vol. 3. № 6. P. 727–732.

Downloads

Published

2019-12-20

How to Cite

Gorodnitskaya, N., Gabysheva, L., Derkach, S., & Martynov, A. (2019). Immunoprophylaxis of pseudomonosis: achievements and perspectives. Annals of Mechnikov’s Institute, (2), 5–15. Retrieved from https://journals.uran.ua/ami/article/view/188486

Issue

Section

Research Articles