The generation of coding sequences of cellular genome through cooption of viral genes
Keywords:
endogenous retroviruses, Ty3/gypsy retrotransposon family, bornaviruses, adeno associated virus, SCAN domain, arc gene, syncytinAbstract
This review attempts to summarize the available dataconcerning the influence of viruses on the generation of the cellular genome coding genes content. For a long time endogenous retroviruses have been considered as selfish elements of the organism genome. But now there is growing evidence that endogenous retroviruses are more than genome junk and can serve as source for new coding sequences allowing organism evolution. Many genes derived from retroviruses have been identified in eukaryote through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. It has been proved that a number of these genes fulfill essential functions for the development and survival of their host. One of the best knownco-opted retroviral genes encoded syncytin plays a key role in the placenta development. It is interesting that during mammalian evolution retroviral envelope genes have been domesticated several times independently to generate syncytin.The activity-regulated cytoskeletal protein Arc is important for cognitive functions and memory formation. Arc was one of over 100 human proteins that have been ‘‘domesticated’’ from the retrotransposon remains of ancient viruses. A number of genes that code the transcription factors have emerged as a result of “taming” the viral genes by the host organism. Now growing evidence reveals that not only retroviruses but other RNA viruses are reverse-transcribed and integrated into the genome of infected cells. It has been recently demonstrated that all Homo sapiens bornavirus like nucleoproteins (EBLN) are expressed in at least one tissue and consequently may have function.The co-option of the viral sequences not only can lead to the major evolutionary innovations, but also is able to create interspecies polymorphism.What it has been described here is probably only the tip of the iceberg, and future genome analyses will certainly uncover new virus-derived genes.
References
Roossinck M. J. Move over bacteria! Viruses make their mark as mutualistic microbial symbionts // J. Virol. 2015. Vol. 89. P. 6532–6535.
Belyi V. A., Levine A. J., Skalka A. M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes // PLoS Pathog. 2010. Vol. 6. P. e1001030.
Belyi V. A., Levine A. J., Skalka A. M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: The Parvoviridae and Circoviridae are more than 40 to 50 million years old // J. Virol. 2010. Vol. 84. P. 12458–12462.
Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T. [et al.] Endogenous non-retroviral RNA virus elements in mammalian genomes // Nature. 2010. Vol. 463. P. 84–87.
Gilbert C., Meik J. M., Dashevsky D., Card D. C., Castoe T. A., Schaack S. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes // Proc. Biol. Sci. 2014. Vol. 281. P. 20141122.
Taylor D. J., Leach R. W., Bruenn J. Filoviruses are ancient and integrated into mammalian genomes // BMC Evol. Biol. 2010. Vol. 10. P.193.
Feschotte C., Gilbert C. Endogenous viruses: Insights into viral evolution and impact on host biology // Nat. Rev. Genet. 2012. Vol. 13. P. 283–296.
Geuking M. B., Weber J., Dewannieux M., Gorelik E., Heidmann T., Hengartner H., Zinkernagel R. M., Hangartner L. Recombination of retrotransposon and exogenous RNA virus results in nonretroviralc DNA integration // Science. 2009. Vol. 323. P. 393–396.
Bill C. A., Summers J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. P. 11135–11140.
Shapiro J.A. Living Organisms Author Their Read-Write Genomes in Evolution // Biology (Basel). 2017. Vol.6(4). P.pii: E42
Mi S., Lee X,, Li X,, Veldman G.M., Finnerty H., Racie L., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis // Nature. 2000. Vol.403. P.785–789.
Mangeney M., Renard M., Schlecht-Louf G., Bouallaga I., Heidmann O., Letzelter C., et al. Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins // Proc. Natl. Acad. Sci. USA. 2007. 104. P.20534–20539.
Søe K., Andersen T.L., Hobolt-Pedersen A.S., Bjerregaard B., Larsson L.I., Delaissé J.M. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion // Bone. 2011. Vol.48. P.837–846.
Redelsperger F., Raddi N., Bacquin A., Vernochet C., Mariot V., Gache V., Blanchard-Gutton N., Charrin S., Tiret L., Dumonceaux J., Dupressoir A., Heidmann T. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusionand Muscle Sexual Dimorphism in Mice // PLoS Genet. 2016. Vol.12(9). e1006289.
Blaise S., de Parseval N., Bénit L., Heidmann T. Genome wide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. //Proc. Natl. Acad. Sci. USA. 2003. Vol.100. P.13013–13018.
Blond J.L., Lavillette D., Cheynet V., Bouton O., Oriol G., Chapel-Fernandes S., et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor //J. Virol. 2000. Vol.74. P.3321–3329.
Esnault C., Priet S., Ribet D., Vernochet C., Bruls T., Lavialle C., et al. A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2// Proc. Natl. Acad. Sci. USA. 2008. Vol.105. P.17532–17537.
Sugimoto J., Sugimoto M., Bernstein H., Jinno Y., Schust D. A novel human endogenous retroviral protein inhibits cell-cell fusion// Sci. Rep. 2013. Vol.3. P.1462.
Naville M., Warren I.A., Haftek-Terreau Z., Chalopin D., Brunet F., Levin P, Galiana D., Volff J.N. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates // Clin Microbiol Infect. 2016. Vol.4. P.312-323.
Cornelis G., Vernochet C., Carradec Q., Souquere S., Mulot B., Catzeflis F., et al. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials // Proc. Natl. Acad. Sci. USA. 2015. Vol.112. E487–96.
de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T (2003) Survey of human genes of retroviral origin: Identification and transcriptome of the genes with coding capacity for complete envelope proteins// J Virol. Vol.77. P.10414–10422
Heidmann O., Béguin A., Paternina J., Berthier R., Deloger M., Bawa O., Heidmann T. HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors // Proc. Natl. Acad. Sci. USA. 2017. Vol.114(32). E6642-E6651.
Malik H.S., Henikoff S., Eickbush T.H. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses // Genome Res. 2000. Vol.10. P.1307–1325.
Ribet D., Harper F., Dupressoir A., Dewannieux M., Pierron G., Heidmann T. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus // Genome Res. 2008. Vol.18. P.597–609.
Brandt J., Schrauth S., Veith A.M., Froschauer A., Haneke T., Schultheis C., et al. Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon derived neogenes in mammals // Gene. 2005; Vol.345. P. 101–111
Ono R., Kobayashi S., Wagatsuma H., Aisaka K., Kohda T., Kaneko-Ishino T., et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21 // Genomics. 2001. Vol.73. P.232–237.
Henke C., Strissel P.L., Schubert M.T., Mitchell M., Stolt C.C., Faschingbauer F., et al. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis // Retrovirology. 2015. Vol.12. P.9
Henke C., Ruebner M., Faschingbauer F., Stolt C.C., Schaefer N., Lang N., et al. Regulation of murine placentogenesis by the retroviral genes Syncytin-A, Syncytin-B and Peg10 // Differentiation. 2013. Vol.85. P.150–160.
Naruse M., Ono R., Irie M., Nakamura K., Furuse T., Hino T., et al. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition // Development. 2014. Vol.141. P.4763–4771
Kagami M., Yamazawa K., Matsubara K., Matsuo N., Ogata T. Placentomegaly in paternal uniparental disomy for human chromosome 14 // Placenta. 2008. Vol.29. P.760–781.
Georgiades P., Watkins M., Surani M.A., Ferguson-Smith A.C. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12 // Development. 2000. Vol.127. P.4719–4728.
Steplewski A., Krynska B., Tretiakova A., Haas S., Khalili K., Amini S. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences // Biochem. Biophys. Res. Commun. 1998. Vol.243. P.295–301.
Irie M., Yoshikawa M., Ono R., Iwafune H., Furuse T., Yamada I, et al. Cognitive function related to the Sirh11/Zcchc16 gene acquired from an LTR Retrotransposon in eutherians // PLoS Genet. 2015. Vol.11. e1005521.
Ivanov D., Stone J.R., Maki J.L., Collins T., Wagner G. Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain // Mol. Cell. 2005. Vol.17. P.137–143.
Emerson R.O., Thomas J.H. Gypsy and the birth of the SCAN domain // J. Virol. 2011. Vol.85. P.12043-12052.
Edelstein L.C., Collins T. The SCAN domain family of zinc finger transcription factors // Gene. 2005. Vol.359. P.1–17
Itokawa Y., Yanagawa T., Yamakawa H., Watanabe N., Koga H., Nagase T. KAP1-independent transcriptional repression of SCAN-KRAB-containing zinc finger proteins // Biochem. Biophys. Res. Commun. 2009. Vol.388. P.689–694
Barde I., Laurenti E., Verp S., Groner A.C., Towne C., Padrun V., Aebischer P., Trumpp A., Trono D.. Regulation of episomal gene expression by KRAB/ KAP1-mediated histone modifications // J. Virol. 2009. Vol.83. P.5574–5580.
Allouch A., Di Primio C., Alpi E., Lusic M., Arosio D., Giacca M., Cereseto A. The TRIM family protein KAP1 inhibits HIV-1 integration // Cell Host Microbe. 2011. Vol.9. P.484–495.
Kaneko-Ishino T., Ishino F. The role of genes domesticated from LTR retrotransposons and retroviruses in mammals // Front. Microbiol. 2012. Vol.3. P.262.
Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, Yoder N, Belnap DM, Erlendsson S, Morado DR, Briggs JAG, Feschotte C, Shepherd JD. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer // Cell. 2018. Vol.172(1-2). P.275-288.
Grow E.J., Flynn R.A., Chavez S.L., Bayless N.L., Wossidlo M., Wesche D.J., Martin L., Ware C.B., Blish C.A., Chang H.Y., Pera R.A., Wysocka J. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells // Nature. 2015. Vol.522. P.221-225.
Lerat E., Birot A.M., Samarut J., Mey A. Maintenance in the chicken genome of the retroviral-like cENS gene family specifically expressed in early embryos // J. Mol. Evol. 2007. Vol.65. P.215–227.
Papanayotou C., Mey A., Birot A.M., Saka Y., Boast S., Smith J.C., et al. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate // PLoS Biol. 2008. Vol.6. e2.
Krylov D.M., Koonin E.V. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control // Curr. Biol. 2001. Vol.11. R584–587.
Greiner E.F., Kirfel J., Greschik H., Huang D., Becker P., Kapfhammer J.P., et al. Differential ligand-dependent protein–protein interactions between nuclear receptors and a neuronal-specific cofactor // Proc. Natl. Acad. Sci. USA. 2000. Vol.97. P.7160–7165.
Chalopin D., Galiana D., Volff J.N. Genetic innovation in vertebrates: gypsy integrase genes and other genes derived from transposable elements // Int. J. Evol. Biol. 2012. Vol.2012. P.724519.
Marín I. GIN. transposons: genetic elements linking retrotransposons and genes // Mol. Biol. Evol. 2010. Vol.27. :P.903–911.
Shin W., Lee J., Son S.Y., Ahn K., Kim H.S., Han K. Human-Specific HERV-K Insertion Causes Genomic Variations in the Human Genome // PLoS ONE. 2013. Vol.8. e60605.
Böhne A., Brunet F., Galiana-Arnoux D., Schultheis C., Volff JN. Transposable elements as drivers of genomic and biological diversity in vertebrates // Chromosome Res. 2008. Vol.16. P.203–215.
Gravel A., Dubuc I., Morissette G., Sedlak R. H., Jerome K. R., Flamand L. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol.112. P.8058–8063.
Shen Z., Liu Y., Luo M., Wang W., Liu J., Liu W., et al. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity // Biochem. Biophys. Res. Commun. 2016. Vol.478. P.825–830.
Liu H., Fu Y., Li B., Yu X., Xie J., Cheng J., et al. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes // BMC Evol. Biol. 2011. Vol.11. P.276
Kapitonov V.V., Jurka J: Rolling-circle transposons in eukaryotes // Proc. Natl. Acad. Sci. USA. 2001. Vol.98. P.8714-8719.
Dutheil N., Smith S.C., Agúndez L., Vincent-Mistiaen Z.I., Escalante C.R., Linden R.M., Henckaerts E. Adeno-associated virus Rep represses the human integration site promoter by two pathways that are similar to those required for the regulation of the viral p5 promoter // J. Virol. 2014. Vol.88. p.8227-8241.
Kobayashi Y., Shimazu T., Murata K., Itou T., Suzuki Y. An endogenous adeno-associated virus element in elephants // Virus Res. 2018. pii: S0168-1702(18). P.30160-30166.
Zemer R., Kitay Cohen Y., Naftaly T., Klein A. Presence of hepatitis C virus DNA sequences in the DNA of infected patients // Eur. J. Clin. Invest. 2008. Vol.38. P.845–848.
Silva, E., Marques, S., Osório, H., Carvalheira, J., Thompson, G. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture // Plos One. 2012. Vol.7. e49820.
Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T., et al. Endogenous non-retroviral RNA virus elements in mammalian genomes // Nature. 2010. Vol.463. P.84-87.
Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes // PLoS Pathog. 2010. Vol.6. e1001030.
Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes // PLoS Genet. 2010. Vol.6: e1001191
Horie M., Kobayashi Y., Honda T., Fujino K., Akasaka T., Kohl C., Wibbelt G., Mühldorfer K., Kurth A., Müller M.A., Corman V.M., Gillich N., Suzuki Y., Schwemmle M., Tomonaga K. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus // Sci. Rep. 2016. Vol.6. P.25873.
Sofuku K., Parrish N.F., Honda T., Tomonaga K. Transcription profiling demonstrates epigenetic control of non-retroviral RNA virus-derived elements in the human genome // Cell Rep. 2015. Vol.12. P.1548–1554.
Myers K.N., Barone G., Ganesh A., Staples C.J., Howard A.E., Beveridge R.D., Maslen S., Skehel J.M., Collis S.J. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability // Sci. Rep. 2016. Vol.6. P.35548.
Kobayashi Y., Horie M., Nakano A., Murata K., Itou T., Suzuki Y. Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians // PLoS Pathog. 2016. Vol.12. e1005785.
He P., Sun L., Zhu D., Zhang H., Zhang L., Guo Y.l., Liu S., Zhou J., Xu X., Xie P. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells // Sci. Rep. 2016 Vol.6. P.25873.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Annals of Mechnikov's Institute
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.