Extracellular DNA in bacterial biofilms. Part I: origin

Authors

  • S Krestetska Mechnikov Institute of microbiology and immunology,

Keywords:

bacterial biofilms, extracellular DNA, review

Abstract

Significant number of chronic bacterial infections involves the biofilm formation, but regulation of this process is still far from beingwell understood. Some progress has been achieved since the reassessment of extracellular DNA (eDNA) functions in biofilm establishment and remodeling, including influence of this natural polymeric substance on mechanical stability and adhesiveness of extracellular polymeric matrix (EPM). As was shown eDNA can appear in EPM at different stages of biofilm development via different ways, including active secretion or assimilation from surrounding milieu, but the main source is widely considered to be induced cell death with subsequent lysis. Cell death induction as a kind of social behavior in prokaryotes seems to represents an essential part of the developmental program, clearly associated with a switch to a sessile community lifestyle and biofilm formation per se. Review is focused on mechanisms allowing controlled eDNA release, mainly on those underlying self- or hetero-destructive behavior in bacterial populations.

References

Flemming, H.C. Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects. /H.C. Flemming, J. Wingender // Water Sci Technol. – 2001 . – V. 43 . – N6 . – P. 1-8.

Whitchurch, C.B. Extracellular DNA required for bacterial biofilm formation. / C.B. Whitchurch, T. Tolker-Nielsen, P.C. Ragas, J.S. Mattick // Science. – 2002 . – V. 295 . - N 5559 . - P. 1487 . – doi: 10.1126/science.295.5559.1487.

Das, T. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. / T. Das, S. Sehar, M. Manefield //Environ MicrobiolRep .– 2013 . – V. 5 . – N 6 . – P. 778-786 . – doi: 10.1111/1758-2229.12085

Wang, S. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa./ S.Wang, X.Liu, H.Liu, L.Zhang, Y.Guo, S.Yu, Wozniak D.J., Ma L.Z. //Environ MicrobiolRep .– 2015 . – V. 7 . – N 2 . – P.330-340 . – doi: 10.1111/1758-2229.12252.

Brockson, M.E. Evaluation of the kinetics and mechanism of action of anti-integration host factor-mediated disruption of bacterial biofilms./ M.EBrockson, L.A. Novotny, E.M.Mokrzan, S.Malhotra, J.A.Jurcisek, R. Akbar, A.Devaraj, S.D. Goodman, L.O.Bakaletz. //MolMicrobiol. – 2014 . – V.93. – N6. – P. 1246-1258 . – doi: 10.1111/mmi.12735.

Peterson, B.W. A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms. / Brandon W. Peterson, Henny C. van der Mei, JelmerSjollema, Henk J. Busscher, Prashant K. Sharma //mBio.. – 2013 . – V. 4. – N 5. – P. e00497-e00513. . –. doi: 10.1128/mBio.00497-13

Lappann, M. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. / M. Lappann, H. Claus, T. van Alen, M. Harmsen, J. Elias, S .Molin, U.Vogel // MolMicrobiol .– 2010 . –V. 75 . – N 6 . – P.1355-1371 .– doi: 10.1111/j.1365-2958.2010.07054.x.

Kiedrowski, M.R. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. / M.R. Kiedrowski, J.S. Kavanaugh, C.L. Malone, J.M. Mootz, J.M. Voyich, M.S. Smeltzer, K.W. Bayles, A.R. Horswill //PLoS One . – 2011 . – V. 6 . – N 11 . – P. e26714 . – doi: 10.1371/journal.pone.0026714.

Steichen, C.T. The Neisseria gonorrhoeae biofilm matrix contains DNA, and an endogenous nuclease controls its incorporation./ C.T. Steichen, C. Cho, J.Q. Shao, M.A. Apicella // Infect Immun . – 2011 . – V. 79 . – N 4 . – P. 1504-1511 . – doi: 10.1128/IAI.01162-10.

Beenken, K.E. Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions. / K.E. Beenken, H. Spencer, L.M. Griffin, M.S. Smeltzer // Infect Immun. . – 2012 . – V. 80 . – N5 . – P.1634-1638. - doi: 10.1128/IAI.06134-11.

deBuhr, N. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. / N. de Buhr, A. Neumann, N. Jerjomiceva, M. von Köckritz-Blickwede, C.G. Baums //Microbiology . – 2014 . – V. 160 .– N 2 . – P. 385-395 . – doi: 10.1099/mic.0.072199-0

Nijland, R. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. / R. Nijland, M.J. Hall, J.G.Burgess // PLoS One. – 2010 . – V.5. – N12. – P.e15668. – doi: 10.1371/journal.pone.0015668.

Cho, C. Role of the nuclease of Nontypeable Haemophilus influenzae in dispersal of organisms from biofilms. / C. Cho, A. Chande, L. Gakhar, L.O. Bakaletz, J.A. Jurcisek, M. Ketterer, J. Shao, K.Gotoh, E. Foster, J. Hunt, E. O'Brien, M.A. Apicella // Infect Immun . – 2015 . – V. 83 .– N3 . – P. 950-957 .– doi: 10.1128/IAI.02601-14..

deBuhr, N. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. / N. de Buhr, A. Neumann, N. Jerjomiceva, M. von Köckritz-Blickwede, C.G. Baums //Microbiology . – 2014 . – V. 160 .– N 2 . – P. 385-395 .– doi: 10.1099/mic.0.072199-0..

Brinkmann, V. Beneficial suicide: why neutrophils die to make NETs. / V. Brinkmann, A. Zychlinsky // Nat. Rev. Microbiol .– 2007 . – V. 5 .– P. 577-582.

Halverson, T.W. DNA is an antimicrobial component of neutrophil extracellular traps. / T.W. Halverson, M. Wilton, K.K. Poon, B. Petri, S. Lewenza //PLoSPathog .– 2015 . – V.11 . - N1 . – e1004593 .– doi: 10.1371/journal.ppat.1004593.

Menegazzi, R. Killing by neutrophil extracellular traps: fact or folklore? / R. Menegazzi, E. Decleva, P. Dri //Blood .– 2012 . – V. 119 . – N 5 . – P. 1214-1216 .– doi: 10.1182/blood-2011-07-364604.

Mann, E.E. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. / E.E. Mann, K.C. Rice, B.R. Boles, J.L. Endres, D. Ranjit, L. Chandramohan, L.H.Tsang, M.S. Smeltzer, A.R. Horswill, K.W. Bayles // PLoSOne .– 2009 . – V. 4 .– N6 . – P. e5822 . – doi: 10.1371/journal.pone.0005822

Seper, A. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. / A.Seper, V.H. Fengler, S. Roier, H. Wolinski, S.D. Kohlwein, A.L. Bishop, A. Camilli, J. Reidl, S. Schild //MolMicrobiol . – 2011 . – V. 82 . – N4 . – P.1015-1037. - doi: 10.1111/j.1365-2958.2011.07867.x..

Rice, K.C. Death's toolbox: examining the molecular components of bacterial programmed cell death. / K.C. Rice, K.W. Bayles //Mol. Microbiol.– 2003. – V. 50. – P. 729–738. – doi: 10.1046/j.1365-2958.2003.t01-1-03720.x

Rice, K.C. Molecular Control of Bacterial Death and Lysis. / Kelly C. Rice, Kenneth W. Bayles// MicrobiolMolBiolRev.– 2008. – V. 72. – N 1.– P. 85–109. – doi: 10.1128/MMBR.00030-07

Bayles, K.W. Bacterial programmed cell death: making sense of a paradox. / K.W.Bayles // Nat Rev Microbiol. –2014 . – V.12 . –N1 . – P. 63-69 .–doi: 10.1038/nrmicro3136.

Bayles, K.W. The biological role of death and lysis in biofilm development. //Nat Rev Microbiol.– 2007. –V.5 . –N9 .– P. 721–726.

Pang, X. Active Bax and Bak are functional holins. / X. Pang, S.H. Moussa, N.M. Targy, J.L. Bose, et al. //Genes Dev. – 2011. – V. 25. – P. 2278–2290.

Gautam, S. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. / S.Gautam, A. Sharma // Mol. Microbiol. – 2002. – V.44 . – P.393–401.

Saier, M.H. Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. / M.H. Jr. Saier, B.L. Reddy // J Bacteriol. –2015 . – V.197. –N1. – P. 7-17. – doi: 10.1128/JB.02046-14

Young, R. Phage lysis: do we have the hole story yet? / R.Young //CurrOpinMicrobiol. –2013 . – V. 16 . – N 6 . – P. 790-797 .–doi: 10.1016/j.mib.2013.08.008.

Moussa, S.H. Genetic dissection of T4 lysis. / S.H. Moussa, J.L. Lawler , R. Young . //J Bacteriol. – 2014 . –V. 196. –N 12. –P. 2201-9.–doi: 10.1128/JB.01548-14.

Tran, T.A. Periplasmic domains define holin-antiholin interactions in T4 lysis inhibition. / T.A.T. Tran, D.K. Struck, R. Young //J. Bacteriol. –2005. –V. 187. – P. 6631–6640.

Petrova, O.E. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage mediated lysis and DNA release during biofilm development through PhdA. / Olga E. Petrova, Jill R. Schurr,Michael J. Schurr, Karin Sauer //MolMicrobiol. –2011 . –V.81 . – N3 . – P. 767–783 .–doi: 10.1111/j.1365-2958.2011.07733.x.

Carrolo, M. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. / M.Carrolo, M.J. Frias, F.R. Pinto, J. Melo-Cristino, M. Ramirez //PLoSOne.– 2010. – V. 5. – N 12. – P. e15678.–doi: 10.1371/journal.pone.0015678. PMID: 21187931

Binnenkade, L. Iron triggers λSoprophage induction and release of extracellular DNA in Shewanellaoneidensis MR-1 biofilms. / L. Binnenkade, L. Teichmann, K.M.Thormann // Appl Environ Microbiol.– 2014. – V. 80. – N 17. – P. 5304-5316. – doi: 10.1128/AEM.01480-14.

Aizenman, E. An Escherichia coli chromosomal “addiction module” regulated by guanosine 3’,5’-bispyrophosphate: a model for programmed bacterial cell death / Aizenman E., H. Engelberg-Kulka, and G. Glaser. //Proc. Natl. Acad. Sci. USA . – 1996. – V.93. – P.6059–6063.

Schuster, C.F. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate / C.F. Schuster, R. Bertram //FEMS MicrobiolLett. – 2013 .– V.340 . – N2 . – P. 73-85 .– doi: 10.1111/1574-6968.12074.

Ogura, T. Mini-F plasmid genes that couple hosts cell division to plasmid proliferation / T. Ogura, S. Hiraga // Proc. Natl. Acad. Sci. USA.– 1983. –V. 80. – P. 4784–4788. – doi: 10.1073/pnas.80.15.4784.

Lehnherr, H. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained / H. Lehnherr, E. Maguin, S. Jafri, and M. B. Yarmolinsky..// J. Mol. Biol.– 1993. – V. 233. – P.414–428.

Ramage, H.R. Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution /Ramage H.R., Connolly L.E., Cox J.S., Rosenberg S.M., ed. //PLoS Genetics .– 2009 .– V.5. – N12. – e1000767 . – doi:10.1371/journal.pgen.1000767.

Bertram, R. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems / Bertram R, Schuster CF.// Frontiers in Cellular and Infection Microbiology.– 2014.– V.4 . – P. 6-7 . - doi:10.3389/fcimb.2014.00006.

Markovski, M. Preventing bacterial suicide: a novel toxin-antitoxin strategy /Markovski M., Wickner S. //Mol. Cell.– 2013 . – V. 52. – P. 611–612 . – 10.1016/j.molcel.2013.11.018

Leplae, R. Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families / Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. //Nucleic Acids Research. – 2011. – V.39. – N13. – P. 5513-5525. – doi:10.1093/nar/gkr131.

Bjørkeng, E.K. ICESluvan, a 94-Kilobase Mosaic Integrative Conjugative Element Conferring Interspecies Transfer of VanB-Type Glycopeptide Resistance, a Novel Bacitracin Resistance Locus, and a Toxin-Antitoxin Stabilization System / Bjørkeng EK, Hjerde E, Pedersen T, Sundsfjord A, Hegstad K. // Journal of Bacteriology. – 2013. – V.195. – N 23. – P. 5381-5390. – doi:10.1128/JB.02165-12.

Dy, R.L. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism /Dy R.L., Przybilski R., Semeijn K., Salmond G.P., Fineran P.C.// Nucleic Acids Res. – 2014 . – V.42. – N7. – P. 4590-605. – doi: 10.1093/nar/gkt1419

Mutschler, H. A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis / Mutschler H., Gebhardt M., Shoeman R.L., Meinhart A.. Waldor M., ed. // PLoS Biology. – 2011. – . V.9. – N 3:e1001033 . – doi:10.1371/journal.pbio.1001033.

Germain, E. Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases /Elsa Germain, Mohammad Roghanian, Kenn Gerdes, Etienne Maisonneuve //Proc Natl Acad Sci U S A . – 2015 . – V.112 . – N 16 . – P. 5171–5176 . – doi: 10.1073/pnas.1423536112

Maisonneuve, E. Molecular Mechanisms Underlying Bacterial Persisters. / E.Maisonneuve, K. Gerdes . //Cell . – 2014 . – V.157 . - N 3 . – P. 539–548 . - doi:10.1016/j.cell.2014.02.050

Lewis, K. Multidrug tolerance of biofilms and persister cells/ K. Lewis //Curr Top Microbiol Immunol . – 2008 . – V.322 . – P.107-131.

Korch, S.B. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis/ Korch SB, Henderson TA, Hill TM.// Mol Microbiol . – 2003 . – V.50 . – N 4 . – P. 1199-213.

Maisonneuve, E. Bacterial persistence by RNA endonucleases / E. Maisonneuve, L.J. Shakespeare, M.G. Jørgensen, K. Gerdes //Proc. Natl. Acad. Sci. USA . – 2011 . – V.108 . – P. 13206–13211

Amitai, S. MazF-mediated cell death in Escherichia coli: a point of no return. / S. Amitai, Y. Yassin, H.Engelberg-Kulka // J Bacteriol. – 2004 . – V.186 . – P. 8295–8300.

Donegan, N.P. Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression / Donegan NP, Cheung AL. // J Bacteriol . – 2009 . – V.191 . – P. 2795–2805. doi: 10.1128/JB.01713-08

Norton, J.P. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli / Norton J.P., Mulvey M.A. //PLoSPathog.– 2012. – V.8 . – N 10 . – P. e1002954 .– doi: 10.1371/journal.ppat.1002954.

Serra, D.O. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms / Serra DO, Hengge R. // Environmental Microbiology . – 2014 . – V.16 . – N 6 . – P.1455-1471 . – doi:10.1111/1462-2920.12483.

Kolodkin-Gal, I. Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation / Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. A. Bereswill S, ed. // PLoS ONE . – 2009 . – V.4 . – N 8 . – :e6785. – doi:10.1371/journal.pone.0006785.

Wang, X. Toxin-Antitoxin Systems Influence Biofilm and Persister Cell Formation and the General Stress Response / Wang X, Wood TK. // Applied and Environmental Microbiology . – 2011 . – V.77 . – N16 . – P. 5577-5583 . – doi:10.1128/AEM.05068-11.

Zhao, J. Escherichia coli toxin gene hipA affects biofilm formation and DNA release / Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q. // Microbiology . – 2013 . – V.159 . – Pt 3 . – P. 633-40 . – doi: 10.1099/mic.0.063784-0.

Baker, D.J. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. / D.J. Baker, B.G. Childs, M. Durik, M.E. Wijers, C.J. Sieben, J. Zhong, A. R. Saltness, K.B. Jeganathan, G.C. Verzosa, A. Pezeshki, K. Khazaie, Miller JD, van Deursen JM.// Nature. – 2016 . – Feb 3. - [Epub ahead of print] . – doi: 10.1038/nature16932

Perkins, H. R. The bacterial autolysins, p. 437–456. – [In H. J. Rogers Microbial cell walls and membranes: by H.J. Rogers, H.R. Perkins and J B Ward] . - Chapman & Hall, London. - 1980 . - p 564.. – ISBN 0-412-12030-5

Heidrich, C. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. / C.Heidrich, M. F. Templin, A. Ursinus, M. Merdanovic, J. Berger, H. Schwarz, M. A. de Pedro, J.-V. Holtje // Mol. Microbiol . – 2001. – V.41. – P. 167-178.

Groicher, K. H. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. / K.H. Groicher, B. A. Firek, D. F. Fujimoto, K.W. Bayles, // JBacteriol. – 2000 . –V.182. –P. 1794–1801.

Ju, C.X. Characterization and Functional Analysis of atl, a Novel Gene Encoding Autolysin inStreptococcus suis. / Cun-Xiang Ju, Hong-Wei Gu, Cheng-Ping Lu // J Bacteriol . – 2012. – V 194. – N 6. – P. 1464–1473. – doi: 10.1128/JB.06231-11

Allignet, J. Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a Gene Encoding an Autolysin-Binding Fibronectin and the ica Operon Involved in Biofilm Formation. / Jeanine Allignet, Sylvie Aubert, Keith G. H. Dyke, Nevine El Solh //Infect Immun.– 2001. –V.69. – N 2. – P. 712–718. – doi: 10.1128/IAI.69.2.712-718.2001

Hussain, M. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization. / M. Hussain,T. Steinbacher, G. Peters , C. Heilmann, K. Becker // Int J Med Microbiol. – 2015. –V.305. – N 1. – P. 129-139 . – doi: 10.1016/j.ijmm.2014.11.010.

Paganelli, F.L. Enterococcus faecium Biofilm Formation: Identification of Major Autolysin AtlAEfm, Associated Acm Surface Localization, and AtlAEfm-Independent Extracellular DNA Release. / Fernanda L. Paganelli, Rob J. L. Willems, Pamela Jansen, AntoniHendrickx, Xinglin Zhang, Marc J. M. Bonten, Helen L. Leavis // mBio. – 2013. – V.4. – N 2 . – P. e00154-13. – doi: 10.1128/mBio.00154-13

Galperin, M.Y. Bacterial signal transduction network in a genomic perspective. // Environ Microbiol.– 2004. –V 6. –N 6. –P. 552-567.

Schaller , G.E. Two-Component Systems and Their Co-Option for Eukaryotic Signal Transduction. / G. Eric Schaller, Shin-Han Shiu, Judith P. Armitage //Current Biology . –2011 . – V.21. – P.320–330. – DOI 10.1016/j.cub.2011.02.045

Thomas, V.C. Suicide and fratricide in bacterial biofilms. / Thomas VC, Hancock LE. // Int J ArtifOrgans. –2009. –V.32. –N 9. – P. 537-544.

Groicher, K.H. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. / K.H. Groicher, B.A. Firek, D.F. Fujimoto, K.W.Bayles // J Bacteriol.– 2000. –V.182. – N 7. – P. 1794-801.

Rice, K.C. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. / K.C. Rice, E.E. Mann, J.L. Endres, E.C. Weiss, J.E. Cassat, M.S. Smeltzer, K.W. Bayles // ProcNatlAcadSci U S A. –2007. –V.104. –P.8113–8118.

Ranjit, D.K. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. / D.K. Ranjit, J.L. Endres, K.W. Bayles // J Bacteriol.– 2011. –V.193. – P. 2468–2476.

Mann EE Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. / E.E. Mann, K.C. Rice, B.R. Boles, J.L. Endres, D. Ranjit, L. Chandramohan, L.H. Tsang, M.S. Smeltzer, A.R. Horswill, K.W. Bayles // PLoS One. – 2009. –V.4. – P. e5822.

Patton, T.G. The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. / T.G. Patton, S.J. Yang, K.W. Bayles // MolMicrobiol. – 2006. – V.59. – P.1395–1404.

Rice, K.C. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. / K.C. Rice, J.B. Nelson, T.G. Patton, S.J. Yang, K.W. Bayles // J Bacteriol. – 2005. – V.187 . – P. 813–821.

Rice, K.C. Transcription of the Staphylococcus aureus cid and lrg murein hydrolase regulators is affected by sigma factor B. / K.C. Rice, T. Patton, S.J. Yang, A. Dumoulin, M. Bischoff, K.W. Bayles // J Bacteriol. – 2004. –V.186. – N 10. – P. 3029-3037.

Chen, C. Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. / C. Chen, V. Krishnan, K. Macon, K. Manne, S.V. Narayana, O. Schneewind // J BiolChem.– 2013 . – V.288. – N 41 . – P. 29440-29452 .– doi: 10.1074/jbc.M113.502039.

Thomas, V.C. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. / VinaiChittezham Thomas, YasuakiHiromasa, Nathan Harms, Lance Thurlow, John Tomich, Lynn Hancock // MolMicrobiol. – 2009 . – V.72. – N 4. – P. 1022–1036 . – doi:10.1111/j.1365-2958.2009.06703.x.

Claverys, J.P. Competence-induced fratricide in streptococci. / J.P.Claverys, B.Martin, L.S.Håvarstein //MolMicrobiol. –2007. – V.64. – P. 1423–1433.

Kari, H.B. Properties and Biological Role of Streptococcal Fratricins. / Helene Berg Kari, Truls Johan Biørnstad, Ola Johnsborg, andLeivSigve // Appl Environ Microbiol. –2012. – V.78 . – N10 . – P. 3515–3522. – doi: 10.1128/AEM.00098-12

Johnston, C. Streptococcus pneumoniae, le transformiste. / C. Johnston, N. Campo, M.J. Bergé, P. Polard, J.P.Claverys // Trends Microbiol. . – 2014 . – V.22 . – N3 . – P. 113-119 . –doi: 10.1016/j.tim.2014.01.002.

Claverys, J.P. The genetic transformation machinery: composition, localization, and mechanism. / J.P. Claverys ,B. Martin, P.Polard// FEMS Microbiol Rev. – 2009 . – V.33. – N3. – P.643-56. – doi: 10.1111/j.1574-6976.2009.00164.x.

Berg, K.Properties and biological role of streptococcal fratricins. / Kari Helene Berg, Truls Johan Biørnstad, Ola Johnsborg, andLeivSigve // Appl Environ Microbiol. . – 2012 . – V.78. – N 10. – P.3515–3522. – doi: 10.1128/AEM.00098-12

Berg, K.H. LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. / K.H. Berg, H.S. Ohnstad, LS.Håvarstein // J Bacteriol. – 2012 . – V.194 . – N3. – P.627-635 . –doi: 10.1128/JB.06273-11.

Li, Y.H. Natural genetic transformation of Streptococcus mutans growing in biofilms. / Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. //J Bacteriol. . –2001 . –V.183 . – P.897–908.

Martin, B. Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. / B.Martin, C. Granadel, N.Campo, V. Hénard, M. Prudhomme, J.P. Claverys//MolMicrobiol. – 2010 . –V.75 . – N6 . – P.1513-1528 . – doi: 10.1111/j.1365-2958.2010.07071.x.

Zhu, L.Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction. / L.Zhu, J.Lin, Z.Kuang, J.E.Vidal, G.W.Lau //Molecular Microbiology . – 2015 . – V.97 . – N1 . –P.151–165 . – doi: 10.1111/mmi.13016.

Morrison, D.A.Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. / D.A.Morrison, M.S.Lee//Res Microbiol. . – 2000 . – V.151 . – N6 . – P. 445-51.

Claverys, J.P.Induction of competence regulons as a general response to stress in gram-positive bacteria. / J.P.Claverys, M.Prudhomme, B.Martin // Annu Rev Microbiol . – 2006 . – V.60 . – P. 451-75.

Da Re, S. Resistance acquisition via the bacterial SOS response: the inducive role of antibiotics. / S.Da Re, M.C.Ploy // Med Sci (Paris). – 2012 . – V.28. – N2. – P. 179-84. – doi: 10.1051/medsci/2012282016.

Claverys, J-P.Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? / J-P Claverys, M Prudhomme, I.Mortier-Barriere, B. Martin //MolMicrobiol. – 2000 . – V.35 . – P.251–259.

Trappetti, C.LuxS Mediates Iron-Dependent Biofilm Formation, Competence, and Fratricide in Streptococcus pneumoniae . / Trappetti C, Potter AJ, Paton AW, Oggioni MR, Paton JC.Camilli A // Infection and Immunity. . – 2011 . – V.79 . – N11 . – P. 4550-4558 . – doi:10.1128/IAI.05644-11.

Kreth, J. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. / Kreth J, Merritt J, Shi W, Qi F.//MolMicrobiol. . – 2005 . –V57 . –P.392–404.

Senadheera, D.B.Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. / D.B.Senadheera, M.Cordova, E.A.Ayala, L.E.Chávez de Paz, K.Singh, J.S.Downey, G.Svensäter, S.D.Goodman, D.G.Cvitkovitch //J Bacteriol. . – 2012 . – V.194 . – N 6 . – P.1307-1316 . – doi: 10.1128/JB.06071-11.

Perry, J.A.Peptide alarmonesignalling triggers an auto-active bacteriocin necessary for genetic competence. / Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Lévesque CM.//Molecular microbiology . – 2009 . –V.72 . – N4 . – P. 905-917 .– doi:10.1111/j.1365-2958.2009.06693.x.

Perry, J.A. Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence. / J.A.Perry, C.M.Lévesque, P.Suntharaligam, R.W.Mair, M.Bu, R.T.Cline, S.N.Peterson, D.G.Cvitkovitch // LettApplMicrobiol. – 2008 . – V.47 . – N5 . – P.439-444 . – doi: 10.1111/j.1472-765X.2008.02455.x.

Perry, J.A. Peptide alarmone signaling triggers an auto-active bacteriocin necessary for genetic competence. / J.A. Perry, M.B. Jones, S.N. Peterson, D.G.Cvitkovitch, C.M.Levesque//Mol. Microbiol. – 2009 . – V.72 . – P.905–917.

Perry, J.A. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. / J.A.Perry, D.G.Cvitkovitch, C.M.Lévesque // FEMS MicrobiolLett. . –2009 . – V.299 . – N2 . – P.261-266 . – doi: 10.1111/j.1574-6968.2009.01758.x.

Barnes, A. M. Enterococcus faecalis Produces Abundant Extracellular Structures Containing DNA in the Absence of Cell Lysis during Early Biofilm Formation. / A.M.T. Barnes, K. S. Ballering, R.S.Leibman, C.L.Wells, G. M. Dunny //mBio. – 2012 . – V.3. – N 4. – P.e00193–e00212 . – doi:10.1128/mBio.00193-12

Zweig, M. Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. / M. Zweig, S. Schork, A.Koerdt, K.Siewering, C.Sternberg, K.Thormann, S.V. Albers, S. Molin, C. van der Does // Environ Microbiol. –2014 . – V.16. – N 4. – P.1040-1052 . – doi: 10.1111/1462-2920.12291.

Liao, S. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. / S. Liao, M.I. Klein, K.P. Heim, Y. Fan, J.P. Bitoun, S.J. Ahn, R.A. Burne, H. Koo, L.J. Brady, Z.T.Wen // J Bacteriol. – 2014. – V.196. – N 13. – P. 2355-2366. – doi: 10.1128/JB.01493-14.

Jack, A.A. Streptococcus gordoniicomCDE (competence) operon modulates biofilm formation with Candida albicans. / A.A. Jack, D.E. Daniels, M.A. Jepson, M.M. Vickerman, R.J. Lamont, H.F. Jenkinson, A.H. Nobbs // Microbiology. – 2015. – V.161. – Pt2 . – P.411-421 . – doi: 10.1099/mic.0.000010. Epub 2014

Bhatty, M. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. / M. Bhatty, M.R. Cruz, K.L. Frank, J.A. Gomez, F. Andrade, D.A. Garsin, G.M. Dunny, H.B. Kaplan, P.J.Christie // MolMicrobiol. – 2015 . – V.95. – N 4. – P.660-677 . –doi: 10.1111/mmi.12893.

Meibom, K.L. Chitin Induces Natural Competence in Vibrio cholera. / Karin L. Meibom, Melanie Blokesch, Nadia A. Dolganov, Cheng-Yen Wu, Gary K. Schoolnik // Science . – 2005 . – V. 310 . – N 5755 . – P. 1824-1827 . – DOI: 10.1126/science.1120096

Langereis, J.D. Novel concepts in nontypeableHaemophilusinfluenzae biofilm formation. / J.D. Langereis, P.W. Hermans //FEMS MicrobiolLett. – 2013. – V.346 . – N 2 . – P.81-89 . – doi: 10.1111/1574-6968.12203.

Hu, W. DNA builds and strengthens the extracellular matrix in Myxococcusxanthus biofilms by interacting with exopolysaccharides. / W. Hu, L. Li, S. Sharma, J. Wang, I. McHardy, R. Lux, Z. Yang, X. He, J.K. Gimzewski, Y. Li, W. Shi // PLoSOne. – 2012 . – V. 7 . – N12 . – P.e51905 .– doi: 10.1371/journal.pone.0051905.

Kaplan, J.B. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. / J.B. Kaplan, E.A. Izano, P. Gopal, M.T. Karwacki, S. Kim, J.L. Bose, K.W. Bayles, A.R.Horswill // MBio. – 2012 . – V.3. – N 4 . –P. e00198-e00212. – doi: 10.1128/mBio.00198-12.

Odenholt, I. Pharmacodynamiceffects of subinhibitory antibiotic concentrations. / I. Odenholt // Int. J. Antimicrob. Agents. – 2001 . – V.17. – P. 1–8.

Das, T. Pyocyanin Promotes Extracellular DNA Release inPseudomonas aeruginosa. / T.Das, M.Manefield // PLoSOne.– 2012. – V 7. – N 10. – P.e46718. – doi: 10.1371/journal.pone.0046718

Das, T. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa. / T.Das, M.Manefield // CommunIntegrBiol. – 2013 . – V6 . – N3 . – P. e23570 . – doi: 10.4161/cib.23570

Downloads

How to Cite

Krestetska, S. (2020). Extracellular DNA in bacterial biofilms. Part I: origin. Annals of Mechnikov’s Institute, (1), 7–16. Retrieved from https://journals.uran.ua/ami/article/view/190913

Issue

Section

Research Articles