Dependence between acylation degree and specific lysis actitivy of the Pseudomonas aeruginosa M6 bacteriophage

Authors

  • A Martynov Mechnikov Institute of microbiology and immunology,
  • B Farber Noigel LLC, New York, USA,
  • T Osolodchenko Mechnikov Institute of microbiology and immunology,
  • S Farber Noigel LLC,
  • T Kabluchko Mechnikov Institute of microbiology and immunology,

Keywords:

acylation, adsorption speed, lytic activity, Pseudomonas M6 bacteriophage

Abstract

Introduction

The purpose of this work is to study the influence of various degrees of protein’s acylation on lytic activity and other biological properties of Pseudomonas M6 bacteriophage. Materials and methods. The subject of the study were samples of the Pseudomonas O 12 bacteriophage, hereinafter named the M6 phage. Pure phage lines were obtained from individual standard-morphology phage plaques (plaque-forming units, or PFUs) after ten passes over the indicator strain. In subsequent experiments, M6 phage samples were selected that had a sufficient level of purity (homogeneous in the morphology of virions that inactivated the homologic antiphage serum by no less than 99.0% and the heterologic antibacterial serum by no more than 1%), and a titer no lower than 10 PFU per ml (PFU/ml). Titration of the phages was conducted using the standard bilayer agar. The crude protein content in the phage suspensions was determined using the spectroscopic method (at 280 and 260 nm). Succinylation of the phage samples was conducted according to the method developed by T.J. Molenaar. The phage’s lytic activity spectrum was determined through spot tests on 224 strains of the Pseudomonas genus and 106 strains of other genera (correspondingly, of strains Enterobacter -40, Escherichia -10, Citrobacter -8, Hafnia -7, Serratia -6, Shigella -10, Salmonella -8, Proteus -7) through the use of a phage suspension containing 10 5 - 10 6 PFU/ml. (This concentration of infectious phage corpuscles corresponds with the critical distribution of the M6 phage). The results of the research were subjected to statistical processing using single-factor dispersion analysis. Results and discussion. One hundred percent phage protein acylation leads to a loss of adsorption ability on sensitive cells and is accompanied by a significant (more than 103 times) decrease in the level of specific lytic activity in the phage preparations. The succinylation type being studied does not cause changes to the morphology or antigen structure of phage virions and does not substantially affect the lytic activity spectrum or the average yield of infectious phage corpuscles on a single sensitive bacterial cell. Considering the relative uniqueness of any biological object (including the M6 phage being studied), the authors recognize the advisability of verifying the established patterns of the effect of various acylation levels on the biological properties of other types and morphological groups of viruses. It was proven that at phage sample acylation levels of 5%, 10%, and 20%, the specific lytic activity increased by a factor of ninety, twelve, and eight respectively. The adsorption speed constant increased by a factor of nine, eight, and eight respectively. And the duration of the latent period fell by 20% in all cases with the development of a productive infection caused by the acylated samples of the phages. The use of this chemical modification method does not cause changes to the morphology or antigen structure of phage virions and does not substantially affect the average yield of infectious phage corpuscles on a sensitive bacterial cell.

References

Campbell A. The future of bacteriophage biology/ A.

Campbell // Nat.Rev. Genet.- 2003.-Vol. 6., No. 4.- P.

-477.

Gvozdyak R. I. Plant, phage, bacterium: a new

hypothesis on their interrelation/ R. I. Gvozdyak //

Mikrobiol. zhurn. - 1993. -Vol. 55., No. 6.- P. 92-94.

Sankaran N. The bacteriophage, its role in

immunology: how Macfarlane Burnet's phage research

shaped his scientific style/ N. Sankaran // Stud Hist Philos

Biol Biomed Sci.- 2010.- Vol. 41., No. 4.- P. 367-375.

Kung V.L., Ozer E.A., Hauser A.R. The accessory

genome of Pseudomonas aeruginosa/ V.L. Kung, E.A.

Ozer, A.R. Hauser // Microbiol Mol Biol Rev.- 2010 .-

Vol.74, No. 4.- P.621-641.

Ceyssens P.J. The genome and structural proteome of

YuA, a new Pseudomonas aeruginosa phage resembling

M6/// P.J. Ceyssens, V. Mesyanzhinov, N. Sykilinda

Briers Y, et al.// J Bacteriol. 2008 Feb;190(4):1429-35.

Martynov A.V. Effect of succinylation of Klebsiella

bacteriophage proteins on specific lytic activity/ A.V.

Martynov, O.M. Tymchenko, S.I. Pokhyl // Mikrobiol Z.-

- Vol.67, N. 5.- P.80-88.

Pitta T.L., Livermorea D.M., Pitchera D., Vatopoulosa

A.C. and Legakisa N.J. Multiresistant serotype O 12

Pseudomonas aeruginosa: evidence for a common strain

in Europe/ T.L. Pitta, D.M. Livermorea, D. Pitchera, et al.

// Epidemiology and Infection.- 1989.- N.103.-P. 565-576

Kwan T. Comparative genomic analysis of 18

Pseudomonas aeruginosa bacteriophages/ T. Kwan, J. Liu,

M. DuBow et al. // J. Bacteriol.- 2006.- Vol.188, N. 3.-

P. 1184-1187.

Zhang Y. Enhanced octadecane dispersion and

biodegradation by a Pseudomonas rhamnolipid surfactant

(biosurfactant)/ Y. Zhang, R.M. Miller // Appl. Environ.

Microbiol.- 1992.-Vol. 58. 3276-3282

Adams M.H. Bacteriophage manipulations, pp. 19-

In Bacteriophages. Interscience Publishers, Inc.-

, New York, NY.

Goldfarb A. Control of promoter utilization by

bacteriophage T4-induced modification of RNA

polymerase alpha subunit/ A. Goldfarb, P. Palm // Nucleic

Acids Res.- 1981.-Vol. 9, N. 19.-P.4863–4878.

Kleckner N. Genetic engineering in vivo using

translocatable drug-resistance elements. New methods in

bacterial genetics/ N. Kleckner, J. Roth, D. Botstein // J

Mol Biol. -1977 .- Vol.116, N. 1.- P.125-159

Josko D. Molecular methods in clinical

microbiology. Introduction / D. Josko // Clin Lab Sci.-

- Vol.23, N.4.- P.228-230

Górski A. Bacteriophage therapy for the treatment of

infections/ A. Górski, R. Miedzybrodzki, J. Borysowski,

et al. // Curr Opin Investig Drugs. -2009.- Vol.10, N 8.-

P.766-774.

Viazis S. Isolation and characterization of lytic

bacteriophages against enterohaemorrhagic Escherichia

coli/ S. Viazis, M. Akhtar, J. Feirtag, et al. // J Appl

Microbiol.- 2011.- Vol.110, N. 5.-P.1323-1331

Practical Chemistry of Protein, Ed. A. Darbe,.

Moscow (1989)

Molenaar T.J. Uptake and processing of modified

bacteriophage M13 in mice: implications for phage

display / T.J. Molenaar, I. Michon, S.A. Haas et al. //

Virology. -2002. –Vol.1, N 293. -P.182-191.

Kuipers M.E. Mechanism of anti-HIV activity of

succinylated human serum albumin / M.E. Kuipers, M. vd

Berg, P.J. Swart et al.//Biochem. Pharmacol. -1999. –

Vol.8, N 57.-P.889-898.

Pini A. Antimicrobial activity of novel dendrimeric

peptides obtained by phage display selection and rational

modification/ A. Pini, A. Giuliani, C. Falciani, et al. //

Antimicrob Agents Chemother.- 2005.- Vol.49, N. 7.-

P.2665-2672.

Smith G. P. Filamentous fusion phage: novel

expression vectors that display cloned antigens on the

virion surface/ G. P. Smith // Science.-1985.- N.228.-

P.1315-1317.

Morello E. Pulmonary Bacteriophage Therapy on

Pseudomonas aeruginosa Cystic Fibrosis Strains: First

Steps Towards Treatment and Prevention/ E. Morello, E.

Saussereau, D. Maura, et al. // PLoS One.- 2011.- Vol.6,

N. 2.-e16963.

Kay M.K. Bacteriophage ecology in Escherichia coli

and Pseudomonas aeruginosa mixed-biofilm

communities/ M.K. Kay, T.C. Erwin, R.J. McLean, G.M.

Aron // Appl Environ Microbiol.- 2011.- Vol.77, N. 3.-

P.821-829.

Januszyk M. Statistics in medicine/ M. Januszyk,

G.C. Gurtner // Plast Reconstr Surg.- 2011.- Vol.127, N.

- P.437-444.

Bradley D. The morphology and physiology of

bacteriophages as revealed by the electron microscope /

D. Bradley // J. Roy.Microscop.Soc. -1965. – N. 84. -

P.257-316.

Frist R.H. The protein subunit of cucumber virus 4;

degradation of viruses by succinylation/ R.H. Frist, I.J.

Bendet, K.M. Smith, M.A. Lauffer // Virology.- 1965.-

Vol.26, N. 4.-P.558-666

Ackermann H. W., Cartier C., Slopek S., Vieu J. F.

Morphology of Pseudomonas aeruginosa typing phages of

the Lindberg set/ H. W. Ackermann, C. Cartier, S. Slopek,

J. F. Vieu // Ann. Inst. Pasteur Virol.- 1988.- N.139.-

P.389-404.

Downloads

How to Cite

Martynov, A., Farber, B., Osolodchenko, T., Farber, S., & Kabluchko, T. (2020). Dependence between acylation degree and specific lysis actitivy of the Pseudomonas aeruginosa M6 bacteriophage. Annals of Mechnikov’s Institute, (2), 16–20. Retrieved from https://journals.uran.ua/ami/article/view/191007

Issue

Section

Research Articles