Molecular targets of nephrotoxic action of polymyxins

Автор(и)

  • Yu Lisnyak Mechnikov Institute of Microbiology and Immunology,

Ключові слова:

polymyxins, megalin, nephrotoxicity, molecular target, LDL-receptors.

Анотація

The rapid spread of multidrug-resistant gram-negative bacterial strains has necessitated the search for the more efficient antimicrobial agents and prompted a renewed interest in polymyxins which have been invaluable for the therapy of serious nosocomial pathogens but withdrawn due to their nephrotoxicity. Polymyxins are nonribosomal cyclic lipopeptides isolated from Paenibacillus polymyxa. Several distinct groups of polymyxins have been structurally identified, each group is characterized by the unique amino acid sequence and the chemical structure of the fatty acyl group. But, only two polymyxins, polymyxin B and colistin (polymyxin E), have been clinically used. The revival of polymyxins into clinical practice has stimulated further thorough investigations of their toxicity. During the last decade, the toxicity of polymyxin B and colistin has been thoroughly studied (taking into account the chemical purity, homogeneity, dosing regimens and other factors) and appeared to be not as high as reported earlier. Nevertheless, it still may substantially complicate therapy and even result in its stoppage. Thus, the development of less toxic polymyxin derivatives remains to be a topical problem. Understanding of molecular mechanism(s) of polymyxin’s toxicity based on detailed knowledge of the peculiarities of their intermolecular interactions with the targets of their toxic action is a prerequisite of a purposeful search for such polymyxin-based compounds. Nephrotoxic effect of polymyxins is determined by their accumulation in the epithelial cells of the kidney proximal tubules. The main factor of the accumulation of these antibiotics considered to be their interaction with megalin, the giant receptor of cell surface, which is the most abundant in the apical membrane of renal proximal tubules. Megalin is a representative of the low-density lipoprotein receptor (LDL-receptor) family which contains several structurally homologous receptors. Megalin is the largest member of the family; molecular weight of rat megalin is about 600 кDа. Its amino acid sequence involves about 4660 amino acid residues and is identical to one of human megalin by approximately 77%. All members of this receptor family have a modular structure, in particular, they contain clusters of two or more cysteine-rich complement-type repeats (CR modules) which are the binding sites of the most ligands of LDL-receptors. Each of CR domains consists of approximately 40 amino acid residues. The binding site of the cationic ligands on the LDL-receptors shown to contain a common structure motif, so called DXDXD motif, which consists of three negatively charged aspartic acid residues coordinated by Са2+ ion and a hydrophobic residue. As a rule, the cationic part of a ligand is represented by lysine residue. The binding occurs mainly due to electrostatic interactions between positively charged lysine residue and negatively charged residues of aspartic acid. The binding is enhanced by hydrophobic interactions between aromatic residue of CR module and aliphatic region of lysine. Structural data on megalin are rather limited now: there is known a structure of CR12 domain of rat megalin and a structure of CR10 domain of human megalin (as well as its complexes with gentamicin) both solved by NMR in solution. Polymyxin binding site on the megalin is not yet determined experimentally, there are absent as well any structural models at atomic level for polymyxin interaction with megalin. However, based on an analysis of available data on the structure of ligand-target complexes for the members of LDL-receptors family, there are reasons to suppose that polymyxin’s molecular fragment which binds to megalin is represented by cationic residues of di-amino-butanoic acid (an analogue of lysine), and the structural DXDXD motifs of CR domains of megalin compose binding sites for polymyxin as well. In the review, the available data on the structure and three-dimensional organization of megalin and other members of LDL-receptors family are represented; the peculiarities of their ligand-target intermolecular interactions are considered. It is concluded that the weakening of polymyxins binding with megalin may be an effective preventive measure against polymyxin-induced nephrotoxicity.

Посилання

Gales, A. C. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010) [Text] / A. C. Gales, M. Castanheira, R. N. Jones, H. S. Sader // Diagnostic Microbiology & Infectious Disease. – 2012. – Vol. 73, N 4. – P. 354-360.

Gales, A. C. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004) [Text] / A. C. Gales, R. N. Jones, H. S. Sader // Clin. Microbiol. Infect. – 2006. – Vol. 12. – P. 312-321. Nicasio, A. M. The current state of multidrug-resistant gram-negative bacilli in North America. Insight from the Society of Infectious Diseases Pharmacists [Text] / A. M. Nicasio, J. L. Kuti, D. P. Nicolau // Pharmacotherapy. – 2008. – Vol. 28, N 2. – P. 235-249.

McGowan, J. E. Resistance in non-fermenting gram-negative bacteria: multidrug resistance to the maximum [Text] / J. E. McGowan // Am. J. Infect. Control. – 2006. – Vol. 34, N 5 Suppl. 1. – P. S29-37.

Vlieghe, P. Synthetic therapeutic peptides: science and market [Text] / P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky // Drug Discovery Today. – 2010. – Vol. 15, N 1/2. – P. 40-56.

Spellberg, B The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious diseases society of America [Text] / B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J. G. Bartlett, J. Edwards, Jr. / Clin. Infect. Diseases. – 2008. – Vol. 46, N 2. – P. 155–641.

Yahav, В. Colistin: new lessons on an old antibiotic [Text]/ D. Yahav, L. Farbman, L. Leibovici, M. Paul // Clin. Microbiol. Infect. – 2012. – Vol. 18. – P. 18–29.

Li, J. Colistin: re-emerging antibiotic for multidrug-resistant gram-negative bacterial infections [Text] / J. Li, R. L. Nation, J. D. Turnidge, et al. // The Lancet Infectious Diseases. – 2010. – V0l. 6, N 9. – P. 589-601.

Zavascki, A. P. Polymyxin B treatment of multidrug-resistant pathogens: a critical review [Text] / A. P. Zavascki, L. Z. Goldani, J, Li, R. L. Nation // J. Antimicrob. Chemother. – 2007. – Vol. 60. – P. 1206-1215.

Conly, J. M. Colistin: the phoenix arises [Text] / J. M. Conly, B. J. // Can. J. Infect. Dis. Med. Microbiol. – 2008. – Vol. 17, N 5. – P. 267-269.

Landman, D. Polymyxin revisited [Text] / D. Landman, C. Georgescu, A. M. Martin, J. Quale // Clin. Microbiol. Reviews. – 2008. – Vol. 21, N 3. – P. 449-465.

Arnold, T. M. Polymyxin antibiotics for gram-negative infections [Text] / T. M. Arnold, G. N. Forrest, K. J. Messmer // Am. J. Health-System Pharmacy. – 2007. – Vol. 64, N 8. – P. 819-826.

Kwa, A. I. Polymyxins: a critical review of the current status including recent developments [Text] / A. L. Kwa, V. H. Tam, M. E. Falagas // Ann. Acad. Med. Singapore. – 2008. – Vol. 37. – P. 870-883.

Fallagas, M. E. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infectins [Text] / M. E. Fallagas, S. K. Kasiakou // Clinical Infection Deseases. – 2005. – Vol. 40. – P. 1333-1341.

Bergen, P. J. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa [Text] / P. J. Bergen, J. Li., C. R. Rayner, R. L. Nation // Antimicrob. Agents Chemother. – 2006. – Vol. 50, N 6. – P. 1953-1958.

Li, J. Evaluation of colistin as an agent against multi-resistant gram-negative bacteria [Text] / J. Li, R. L. Nation, R. W. Milne, J. D. Turnidge, K. Coulthard // Int. J. Antimicrobial Agents. – 2005. – Vol. 25. – P. 11-25.

Huang, J. Intravenous colistine sulfate: a rarely used form of polymixin E for the treatment of severe multidrug-resistant Gram-negative bacterial infections [Text] / J. Huang, Y.-Q. Tang, J.-Y. Sun // Scandinavian J. Infectious Diseases. – 2010. – Vol. 42, N 4. – P. 260-265.

Velkov, T. Structure-activity relationships of polymyxin antibiotics [Text] / T. Velkov, P. E. Thompson, R. L. Nation, J. Li // J. Med. Chem. – 2010. – Vol. 53, N 5. – P. 1898–1916.

Falagas, M. E. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies [Text] / M. E. Falagas, S. K. Kasiakou // Critical Care. – 2006. – Vol. 10, N 1. – P. 1-13.

Ouderkirk, J. P. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gram-negative bacteria [Text] / J. P. Ouderkirk, J. A. Nord, G. S. Turett, J. W. Kislak // Antimicrobial Agents and Chemotheraphy. – 2003. – Vol. 47, N 8. – P. 2659-2662.

Mingeot-Leclercq, M.-P. Novel polymyxin derivatives are less cytotoxic than polymyxin B to renal proximal tubular cells [Text] / M.-P. Mingeot-Leclercq, P. M. Tulkens, S. Denamur, T. Vaara, M. Vaara // Peptides. – 2012. – Vol. 35. – P. 248-252.

Vaara, M. Novel polymyxin derivatives carring only three positive charges are effective antibacterial agents / [Text] M. Vaara, J. Fox, G. Loidl, O. Siikanen, J. Apajalahti, F. Hansen, N. Frimodt-Moller, J. Nagai, M. Takano, T. Vaara // Antimicrobial Agents and Chemotheraphy. – 2008. – Vol. 52, N 9. – P. 3229-3236.

Vaara, M. Structure-activity studies on novel polymyxin derivatives that carry only three positive charges [Text] / M. Vaara, T. Vaara // Peptides. – 2010. – Vol. 31, N 12. - P. 2318-2321.

Vaara, M. A novel polymyxin derivative that lacks fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane / [Text] M. Vaara, O. Silikanen, J. Apajalahti, J. Fox, N. Frimodt-Moller, H. He, A. Poudyal, J. Li, R. L. Nation, T. Vaara // Antimicrobial Agents and Chemotheraphy. – 2010. – Vol. 54, N 8. – P. 3341-3246.

Ali, F. E. A. Pharmacokinetics of novel antimicrobial cationic peptides NAB 7061 and NAB 739 in rats following intravenous administration [Text] / F. E. A. Ali, G. Cao, A. Poudyal, T. Vaara, R. L. Nation, M. Vaara, J. Li // J. Antimicrob. Chemother. – 2009. – Vol. 64. – P. 1061-1064.

Lundberg, C. V. Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice [Text] / C. V. Lundberg, T. Vaara, N. Frimodt-Moller, M. Vaara // J. Antimicrob. Chemother. – 2010. – Vol. 65. – P. 981-985.

Vaara, M. Susceptibility of carbapenem-producing strains of Klebsiella pneumoniae and Escherichia coli to the direct antimicrobial activity and to the synergistic activity of NAB7061 with rifampin and clarithromycin [Text] / M. Vaara, O. Silikanen, J. Apajalahti, N. Frimodt-Moller, T. Vaara // J. Antimicrob. Chemother. – 2010. – Vol. 65. – P. 942-945.

Kanazawa, K. Contribution of each amino acid residue in polymyxin B3 to antimicrobial and lipopolysaccharide binding activity [Text] / K. Kanazawa, Y. Sato, K. Ohki, K. Okimura, Y. Uchida, M. Shindo, N. Sakura // Chem. Pharm. Bull. – 2009. – Vol. 57, N 3. – P. 240-244.

Kasuma, N. Development of des-fatty acyl-polymyxin decapeptide analogs with pseudomonas aeruginosa-specific antimicrobial activity Text] / N. Kasuma, Y. Sato, K. Ohki, K. Okimura, K. Ohnishi, N. Sakura // Chem. Pharm. Bull. – 2009. – Vol. 57, N 4. – P. 332-336.

Okimura, K. Semi-synthesis of polymyxin B (2-10) and colistin (2-10) analogs employing the trichloroethoxycarbonyl (Troc) group for side chain protection of α,γ-diaminobutyric acid residues [Text] / K. Okimura, K. Ohki, Y. Sato, K. Ohnishi, N. Sakura // Chem. Pharm. Bull. – 2007. – Vol. 55, N 12. – P. 1724-1730.

Sakura, N. The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity [Text] / N. Sakura, T. Itoh, Y. Uchida, K. Ohki, K. Okimura, K. Chiba, Y. Sato, H. Sawanishi // Bull. Chem. Soc. Jap. – 2004. – 77, N 10. – P. 1915-1924.

Sato, Y. Novel des-fatty acyl-polymyxin B derivatives with Pseudomonas aeruginosa-specific antimicrobial activity [Text] / Y. Sato, M. Shindo, N. Sakura, Y. Uchida, I. Kato // Chem. Pharm. Bull. – 2011. – Vol. 59, N 5. – P. 597-602.

Abdelraouf, K. Uptake of polymyxin B into renal cell [Text] / K. Abdelraouf, K.-T. Chang, T. Yin, M. Hu, Tam V. H. // Antimicrob. Agents Chemother. – 2014. – Vol. 58, N 7. – P. 4200-4202.

Suzuki, T. Megalin contributes to kidney accumulation and nephrotoxicity of colistin [Text] / T. Suzuki, H. Yamaguchi, J. Ogura, M. Kobayashi, T. Yamada, K. Iseki // Antimicrob. Agents Chemother. – 2013. – Vol. 57, N 12. – P. 6318-6324.

Berg, J. R. Effect of polymyxin on mammalian urinary bladder [Text] / J. R. Berg, C. M. Spillker, S. A. Lewis // J. Membrane Biol. – 1996. – Vol. 154. – P. 119-130.

Lewis, J. R. Colistin interactions with mammalian urothelium [Text] / J. R. Lewis, S. A. Lewis // Am. J. Physiol. Cell. Physiol. – 2004. – Vol. 286. – P. C913-C922.

Christensen, E. I. Protein reabsorbtion in renal proximal tubule – function and dysfunction in kidney pathophysiology [Text] / E. I. Christensen, J. Gburek // Pediatric nephrology. – 2004. – Vol. 19. – P. 714-721.

Nielsen, R. Proteinuria and events beyond the slit [Text] / R. Nielsen, E. I. Christensen // Pediatric nephrology. – 2010. – Vol. 25, N 5. – P. 813-822.

Moestrup, S. K. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs [Text] / S. K. Moestrup, S. Cui, H. Vorum, C. Bregengard, S. E. Bjom, K. Norris, J. Gliemann, E. l. Christensen // J. Clin. Invest. – 1995. – Vol. 96. – P. 1404-1413.

Farquhar, M. G. The unfolding story of megalin (gp330): now recognized as a drug receptor [Text] / M. G. Farquhar // J. Clin. Invest. – 1995. – Vol. 96. – P. 1184.

Farquhar, M. G. Molecular analysis of the pathological autoimmune antigens of Heymann nephritis [Text] / M. G. Farquhar // American J. Pathology. -1996. – Vol. 148, N 5. – P. 1331-1337.

Schmitz, C. Megalin deficiency offers protection from renal aminoglycoside accumulation [Text] / C. Schmitz, J. Hilpert, C. Jacobsen, C. Boensch, E. I. Christensen, F. C. Luft, T. E. Willnow // J. Biol. Chem. – 2002. – Vol. 277, N 1. – P. 618-622.

Nagai, J. Molecular aspects of renal handling of aminoglycosides and strategy for preventing nephrotoxicity [Text] / J. Nagai, M. Takano // Drug Metab. Pharmacokin. – 2004. – Vol. 19, N 3. – P. 159-170.

Verroust, P. J. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology [Text] / P. J. Verroust, H. Birn, R. Nielsen, R. Kozyraki, E. I. Christensen // Kidney International. – 2002. – Vol. 62. – P. 745–756.

Christensen, E. I. Receptor-mediated endocytosis in renal proximal tubule [Text] / E. I. Christensen, P. J. Verroust, R. Nielsen // Pflügers Archiv European Journal of Physiology. – 2009. – Vol. 458, N 6. – P. 1039-1048.

Hussain, M. M. The mammalian low-density lipoprotein receptor family [Text] / M. M. Hussain, D. K. Strickland, A. Bakillah // Annu. Rev. Nutr. – 1999. – Vol. 19. – P. 141-172.

Lundgren, S. Tissue distribution of human gp330/megalin, a putative Ca2+ sensing protein [Text] / S. Lundgren, T. Carling, G. Hjalm, C. Juhin et al. // J. Histochem. Cytochem. – 1997. – Vol. 45, N 3. – P. 383-392.

Nagai, J. Molecular-targeted approaches to reduce renal accumulation of nephrotoxic drugs [Text] / J. Nagai, M. Takano // Expert Opinion on Drug Metabolism & Toxicology. – 2010. – Vol. 6, N 9. – P. 1125-1138.

Saito, A. Molecular mechanisms of receptor-mediated endocytosis in the renal proximal tubular epithelium [Text] / A. Saito, H. Sato, N. Iino, T. Takeda // Journal of Biomedicine and Biotechnology. – 2010. – Vol. 2010. – P. 1-7.

Hertz, J. Expanding functions of lipoprotein receptors [Text] / J. Hertz, Y. Chen, I. Masiulis, L. Zhou // J. Lipid Res. – 2009. – Vol. 50. – P. S287-S292.

Saito, A. Complete cloning and sequencing of rat/”megalin”, a distinctive member of low density lipoprotein receptor gene family [Text] / A. Saito, S. Pietromonaco, A. K.-C. Loo, M. G. Farquhar // Proc. Nat. Acad. Ssi. – 1994. – Vol. 91. – P. 9725-9729.

Lillis, A. P. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies [Text] / A. P. Lillis, L. B. van Duyn, J. E. Murphy-Ullrich, D. K. Strickland // Physiol. Rev. – 2008. – Vol. 88. – P. 887-918.

Jeon, H. Structure and physiologic function of the low-density lipoprotein receptor [Text] / H. Jeon, S. C. Blacklow // Annu. Rev. Biochem. – 2005. - Vol. 74. – P. 535-562.

Gent, J. Low-density lipoprotein receptor structure and folding [Text] / J. Gent, I. Braakman // Cell. Mol. Life Sci. – 2004. – Vol. 61, N 19-20. – P. 2461-2470.

Russell, D. W. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins [Text] / D. W. russell, M. S. brown, J. L. goldstein // J. Biol. Chem. – 1989. – Vol. 264. – P.21682-21688.

Esser, V. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor[Text] / V. Esser, L. E. Limbird, M. S. Brown, J. L. Goldstein, D. W. Russell // J. Biol. Chem. – 1988. Vol. 263. – P. 13282-13290.

Fass, D. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module [Text] / D. Fass, S. Blacklow, P. S. Kim, J. M. Berger // Nature. – 1997. – Vol. 388. – P. 691-693.

Saha, S. Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains [Text] / S. Saha, J. Boyd, J. M. Werner, V. Knott, P. A. Handford, I. D. Campbell, A. K. Downing // Structure. – 2001. - Vol. 9, N 6. - P.451–456.

Jeon H. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair [Text] / H. Jeon, W. Meng, J. Takagi, M. J. Eck, T. A. Springer, S. C. Blacklow // Nat. Struct. Biol. – 2001. – Vol. 8, N 6. – P.

Rudenko, G. Structure of the LDL receptor extracellular domain at endosomal pH [Text] / G. Rudenko, L. Henry, K. Henderson, K. Ichtchenko, M. S. Brown, J. L. Goldstein, J. Deisenhofer // Science. – 2002. – Vol. 298. – P. 2353-2358.

Daly, N. L. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor [Text] / N. L. Daly, M. J. Scanlon, J. T. Djordjevic, P. A. Kroon, R. Smith // Proc. Natl. Acad. Sci. USA. – 1995. – Vol. 92, N 14. – P. 6334-6338.

Daly, N. L. Three-dimensional structure of the second cysteine-rich repeat from the human low-density lipoprotein receptor [Text] / N. L. Daly, J. T. Djordjevic, P. A. Kroon, R. Smith // Biochemistry. – 1995. – Vol. 34, N 44. – P. 14474-14481.

Pena, F. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum [Text] / F. Pena, A. Jansens, G. van Zadelhoff, I. Braakman // J. Biol Chem. -2010. – Vol. 285, N 12. – P. 8656-8664.

Wolf, C. A. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin [Text] / C. A. Wolf, F. Dancea, M. Shi, V. Bade-Noskova, H. Ruterjans, D. Kerjaschki, C. Lucke // J. Biomol. NMR. – 2007. – Vol. 37. – P. 321-328.

Dagil, R. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats. Insight from the NMR structure of the 10th complement type repeat domain alone and in complex with gentamicin [Text] / R. Dagil, C. O’Shea, A. Nykjær, A. M. J. J. Bonvin, B. B. Kragelund // J. Biol. Chem. – 2013. – Vol. 288, N 6. – P. 4424-4435.

North, C. L. Solution structure of the sixth LDL-A module of the LDL receptor [Text] / C. L. North, S. C. Blacklow // Biochemistry. – 2000. – Vol. 39. – P. 2564-2571.

Dolmer, K. NMR solution structure of complement-like repeat CR3 from the low density lipoprotein receptor-related protein. Evidence for specific binding to the receptor binding domain of human alpha(2)-macroglobulin [Text] / K. Dolmer, W. Huang, P. G. Gettins // J. Biol. Chem. – 2000. – Vol. 275. – P. 3264-3269.

Huang, W. NMR solution structure of complement-like repeat CR8 from the low density lipoprotein receptor-related protein // J. Biol. Chem. – 1999. – Vol. 274. – P. 14130-14136.

Simonovic, M. Calcium coordination and pH dependence of the calcium affinity of ligand-binding repeat CR7 from LRP. Comparison with related domains from the LRP and LDL receptor [Text] / Biochemistry. – 2001. – Vol. 40. – P. 15127-15134.

Kurniawan, N. D. NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor [Text] / N. D. Kurniawan, A. R. Atkins, S. Bieri, C. J. Brown, I. M. Brereton, P. A. Kroon, R. Smith // Protein Sci. – 2000. – Vol. 9. – P. 1282-1293.

North, C. L. Structure independence of ligand-binding modules five and six of the LDL receptor [Text] / C. L. North, S. C. Blacklow // Biochemistry. – 1999. – Vol. 38. – P. 3926-3935.

Guttman, M. The structure, dynamics, and binding of the LA45 module pair of the low-density lipoprotein receptor suggest an important role for LA4 in ligand release [text] / M. Guttman, E. A. Komives // Biochemistry. – 2011. – Vol. 50, N 51. – P. 11001-11008.

Jensen, G. A. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif [Text] / G. A. Jensen, O. M. Andersen, A. M. J. J. Bonvin, I. Bjerrum-Bohr, M. Etzerodt, H. C. Thogersen, C. O'Shea, F. M. Poulsen, B. B. Kragelund // J. Mol. Biol. – 2006. – Vol. 362, N 4. – P. 700–716.

Andersen, O. M. Analysis of a two-domain binding site for the urokinase-type plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein [Text] / O. M. Andersen, H. H. Petersen, C. Jacobsen, S. K. Moestrup, M. Etzeroot, P. A. Andreasen, H. C. Thogersen // Biochem J. – 2001. – Vol. 357. – P. 289-296.

Andersen, O. M. Ca2+ binding to complement-type repeat domains 5 and 6 from low-density lipoprotein receptor-related protein [Text] / O. M. Andersen, H. Vorum, H. C. Thogersen // BMC Biochemistry. – 2003. – Vol. 4. – P. 1-7.

Fisher, C. Structure of an LDLR-RAP сomplex reveals a general mode for ligand recognition by lipoprotein receptors [Text] / C. Fisher, N. Beglova, S. C. Blacklow // Molecular Cell. – 2006. – Vol. 22. – P. 277–283.

Orlando, R. A. Identification of the second cluster of ligand-binding repeats in megalin as a site for receptor-ligand interactions [Text] / R. A. Orlando, M. Exner, R.-P. Czekay, H. Yamazaki, A. Saito, R. Ulrich, D. Kerjaschki, M. G. Farquhar // Proc. Nat. Acad. Sci. USA. – 1997. – Vol. 94. – P. 2368-2373.

Neels, J. G. The second and fourth cluster of class A cysteine-rich repeates of the low density lipoprotein receptor-related protein share ligand-binding properties [Text] / J. G. Neels, B. M. M. van den Berg, A. Lookene, G. Olivecrona, H. Pannekoek, A.-J. van Zonneveld // J. Biol. Chem. – 1999. – Vol. 274, N 44. – P. 31305-31311.

Lazic, A. Dissection of RAP-LRP interactions: binding of RAP and Rap fragments to complement-like repeats 7 and 8 from ligand binding cluster II LRP [Text] / A. Lazic, K. Dolmer, D. K. Strickland, P. G. W. Gettins // Archives of Biochemistry and Biophysics. – 2006. – Vol. 450, N 2. – P. 167-175.

Russell, D. W. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins [Text] / D. W. Russell, M. S. Brown, J. L. Goldstein // J. Biol. Chem. – 1989. – Vol. 264. – P. 21682-21688.

Kurasawa, J. H. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII [Text] / J. H. Kurasawa, S. A. Shestopal, E. Karnaukhova, E. B. Struble, T. K. Lee // J. Biol. Chem. – 2013. – Vol. 288, N 30. – P. 22033-22041.

Dolmer, K. Three complement-like repeats compose the complete α2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein [Text] / K. Dolmer, P. G. W. Gettins // J. Biol. Chem. – 2006. – Vol. 281, N 45. – P. 34189-34196.

Dolmer, K. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to low density lipoprotein receptor-related protein (LRP1) [Text] / K. Dolmer, A. Campos, P.G.W. Gettins // J. Biol. Chem. – 2013. – Vol. 288, N 33. – P. 24081-24090.

Gettins, P. G. W. A proximal pairs of positive charges provides the dominant ligand-binding contribution to complement-like domains from the LRP (low-density receptor-related protein) [Text] / P. G. W. Gettins, K. Dolmer // Biochem.J. – 2012. – Vol. 443. – P. 65-73.

van den Biggalaar, M. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-mensity lipoprotein receptor-related protein [Text] / M. van den Biggalaar, E. Sellink, J. W. T. M. K. Gebbinck, K. Mertens, A. B. Meijer // The Journal of Biochemistry & Cell Biology. – 2011. – Vol. 43, N 3. – P. 431-440.

##submission.downloads##

Як цитувати

Lisnyak, Y. (2020). Molecular targets of nephrotoxic action of polymyxins. Анали Мечниковського Інституту, (3), 8–24. вилучено із https://journals.uran.ua/ami/article/view/193458

Номер

Розділ

Дослідні статті