The effect of Bifidobacterim bifidum cell-free supernatants, ascorbic acid, fructose, sorbitol, xylitol and stevia on the daily biomass growth of opportunistic microorganisms

Authors

Keywords:

Bifidobacterim bifidum, cell-free supernatants, ascorbic acid, fructose, sorbitol, xylitol stevia, biomass growth, opportunistic microorganisms

Abstract

Introduction. The use of probiotic bacteria as biotransformator system is a promising way to obtain new derivatives of known substances with antimicrobial or other beneficial activity. The aim of the research was to investigate the effect of the Bifidobacterim bifidum cell-free supernatants, obtained by cultivation of bifidobacteria in their own disintegrate supplemented with ascorbic acid (BbAsc), fructose (BbFr), sorbitol (BbSor), xylitol (BbXyl) or stevia (BbSt) and the substances themselves (Asc, Sor, Xyl or St) on the growth of opportunistic microorganisms. Material & methods. The effect of the studied supernatants and substances on the daily biomass growth of the test cultures was investigated by spectrophotometry using a 96-well polystyrene microtiter plates and a «LisaScanEM» spectrophotometer («ErbaLachemas.r.o.», Czech Republic). Reference strains Staphylococcus aureus ATCC 25923; Escherichia coli AТСС 25922 and Pseudomonas aeruginosa AТСС 27853 were used as a test cultures. The final concentration of the studied supernatants and substances in the incubation medium was 30%vol, and the final concentration of bacterial cells was ~106 CFU/ml. Inhibition (II) or stimulation (SI) indices of the daily biomass growth of test cultures were calculated by the formula where ∆Dt and ∆Dc are the optical density gain of test and control samples. Results & discussion. Among the studied substances, stevia alone did not affect the daily biomass growth of any of the test cultures, either as in solution with a final concentration of 30 mg/ml or as in a supernatant of B. bifidum culture. Fructose at a final concentration of 30 mg/ml had the same effect on test cultures growth as the supernatant of B. bifidum culture after probiotic cultivation with fructose: it inhibited staphylococcal growth (Fr: II = 30,9 %, BbFr: II = 34,6 %), stimulated the growth of P. aeruginosa (Fr: ІS = 23,7 %, BbFr: IS = 19,8 %) and did not affect the growth of E. coli. Xylitol at a final concentration of 30 mg/ml did not affect the growth of P. aeruginosa biomass, but inhibited the growth of E. coli (ІI = 20,9 %) and S. aureus (ІI = 28,4 %). The supernatant of B. bifidum, cultured in the presence of xylitol inhibited the growth of S. aureus biomass (ІI = 26,1 %) and did not affect the growth of the other test cultures. The sorbitol and cell-free supernatant of B. bifidum cultured in the presence of this polyol equally influenced the biomass growth of test cultures: had no significant effect on the daily biomass growth of S. aureus but stimulated the growth of E. coli (BbSor: ІS = 43,9 %, Sor: ІS = 34,5 %) and P. aeruginosa (BbSor: ІS = 26,4 %, Sor: ІS = 28 %). The only substance that significantly inhibited the biomass growth of all test cultures was ascorbic acid. Cell-free supernatant of B. bifidum (BbAsc) cultured in disintegrate supplemented with ascorbic acid caused more pronounced inhibition of the daily biomass growth (S. aureus – 78 %, E. coli – 52 % and P. aeruginosa – 45 %) compared to ascorbic acid (Asc) itself (S. aureus – 42 %, E. coli – 35 % and P. aeruginosa – 38 %). Conclusion. Among the studied substances, only ascorbic acid caused significant inhibition of biomass growth of all test cultures. B. bifidum sell-free supernatant obtained by cultivation of bifidobacteria in their own disintegrate supplemented with ascorbic acid caused a more severe inhibition of test cultures growth than ascorbic acid itself. The absence of signs of chemical modification of ascorbic acid in the B. bifidum cell-free supernatant on the chromatogram indicates that the greater inhibitory effect of this supernatant is due to the synergistic effect of ascorbic acid and the inhibitory compounds produced by B. bifidum during cultivation. The other studied substances showed various effects on the daily biomass growth of test cultures. The use of B. bifidum as a biotransformer system, and xylitol, sorbitol, fructose and stevia as precursors for the production of new antimicrobials by combinatorial biosynthesis, turned out to be not effective enough.

DOI: 10.5281/zenodo.3885190

References

Sarkar, A., & Mandal, S. (2016). Bifidobacteria ‒ insight into clinical outcomes and mechanisms of its probiotic action. Microbiological Research, 192, 159-171. doi: 10.1016/j.micres.2016.07.001

Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., Suzuki, K.-I., Ludwig, W., & Whitman, W. B. (Eds.). (2012). Bergey's Manual® of Systematic Bacteriology: Volume Five: The Actinobacteria, Part A. Springer New York. Pp. 171-206. doi:10.1007/978-0-387-68233-4

Ang, E. L., Sun, H., Liu, Z., & Zhao, H. (2015). Recent advances in combinatorial biosynthesis for drug discovery. Drug Design, Development and Therapy, 823. doi:10.2147/dddt.s63023

Spinler, J. K., Auchtung, J., Brown, A., Boonma, P., Oezguen, N., Ross, C. L., Luna, R. A., Runge, J., Versalovic, J., Peniche, A., Dann, S. M., Britton, R. A., Haag, A., & Savidge, T. C. (2017). Next-generation probiotics targeting Clostridium difficile through precursor-directed antimicrobial biosynthesis. Infection and Immunity, 85(10). doi:10.1128/iai.00303-17

Salli, K., Lehtinen, M. J., Tiihonen, K., & Ouwehand, A. C. (2019). Xylitol’s health benefits beyond dental health: a comprehensive review. Nutrients, 11(8), 1813. doi:10.3390/nu11081813

Sarmiento-Rubiano, L. A., Zúñiga, M., Pérez-Martínez, G., & Yebra, M. J. (2007). Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Research in Microbiology, 158(8-9), 694–701. doi:10.1016/j.resmic.2007.07.007

Lugani, Y., & Sooch, S. (2017). Xylitol, an emerging prebiotic: a review. International journal of Applied Pharmaceutical and Biological Research, 2017; 2(2):67-73.

Deniņa, I., Semjonovs, P., Fomina, A., Treimane, R., & Linde, R. (2013). The influence of stevia glycosides on the growth of Lactobacillus reuteri strains. Letters in Applied Microbiology, 58(3), 278–284. doi:10.1111/lam.12187

Kallio, J., Jaakkola, M., Mäki, M., Kilpeläinen, P., & Virtanen, V. (2012). Vitamin C inhibits Staphylococcus aureus growth and enhances the inhibitory effect of Quercetin on growth of Escherichia coli in vitro. Planta Medica, 78(17), 1824–1830. doi:10.1055/s-0032-1315388

Panda, L. (2018). Antibacterial activity of ascorbic acid: pH effect, specific action or both? In Abstracts of papers of the American Chemical Society (Vol. 255). 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc. doi: 10.13140/RG.2.2.22321.48482

Verghese R.J., Mathew S.K., David A. (2017). Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. Journal of Current Research in Scientific Medicine, 3(2), 88. doi:10.4103/jcrsm.jcrsm_35_17

Knysh O.V., Martynov A.V. (2020). Potentiation of the antimicrobial effect of Lactobacillus reuteri DSM 17938 cell-free extracts by ascorbic acid. Medical Perspectives. 25(1), DOI: 10.26641/2307-0404.2020.1.200393

Knysh, O. V., Isaenko, O. Y., Babych, E. M., Kompaniets, A. M., Pakhomov, O. V., Polyanska, V. P., Zachepylo, S. V., & Danilova, I. S. (2018). Antimicrobial activity of bifidobacteria derivatives after storage in a frozen state. Problems of Cryobiology and Cryomedicine, 28(3), 237-248. doi: 10.15407/cryo28.03.237doi:10.15407/cryo28.03.237

Knysh O.V., Martynov A.V., Voyda Yu.V., Babych Ye.M. (2020). The influence of polyols on the bacteriotropic properties of the Lactobacillus reuteri cell-free superants. Annals of Mechnikov᾽s Institute, 1, doi: 10.5281/zenodo.3726635

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer K.-H., & Whitman, W. B. (Eds.). (2011). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media. Pp. 392-421.

Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (Eds.). (2005). Bergey’s Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria, Part B. The Gammaproteobacteria. Springer-Verlag US. Pp. 323-379, 607-725. doi:10.1007/0-387-28021-9

Siegrist, J. (2011). Differentiation of Escherichia coli from coliforms. AnalytiX. St. Louis: Sigma-Aldrich.

Ferreira, A. S., Barbosa, N. R., Júnior, D. R., & da Silva, S. S. (2009). In vitro mechanism of xylitol action against Staphylococcus aureus ATCC 25923. Current Research Topics in Applied Microbiology and Microbial Biotechnology. 505-509. doi:10.1142/9789812837554_0105

Sousa, L. P. de, Silva, A. F. da, Calil, N. O., Oliveira, M. G., Silva, S. S. da, & Raposo, N. R. B. (2011). In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol. Brazilian Archives of Biology and Technology, 54(5), 877–884. doi:10.1590/s1516-89132011000500004

Silva, A. F. da, Suzuki, É. Y., Ferreira, A. S., Oliveira, M. G., Silva, S. S. da, & Raposo, N. R. B. (2011). In vitro inhibition of adhesion of Escherichia coli strains by Xylitol. Brazilian Archives of Biology and Technology, 54(2), 235–241. doi:10.1590/s1516-89132011000200003

Dowd, S. E., Sun, Y., Smith, E., Kennedy, J. P., Jones, C. E., & Wolcott, R. (2009). Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. Journal of Wound Care, 18(12), 508–512. doi:10.12968/jowc.2009.18.12.45608

Mengoni, E., Dugour, A., Vojnov, A., & Figueroa, J. (2013). Xylitol affects production of virulence factors and biofilm in Pseudomonas aeruginosa; effects on respiratory epithelium inflammation." In vitro" studies. European Respiratory Journal, 42 (Suppl 57), P2109.

Downloads

How to Cite

Knysh, O., & Martynov, A. (2020). The effect of Bifidobacterim bifidum cell-free supernatants, ascorbic acid, fructose, sorbitol, xylitol and stevia on the daily biomass growth of opportunistic microorganisms. Annals of Mechnikov’s Institute, (2), 71–76. Retrieved from https://journals.uran.ua/ami/article/view/205071

Issue

Section

Research Articles