Anti-adhesive therapies as a contemporary means to fight infectious diseases and adherence factors of Corynebacteria diphtheriae

Authors

  • I Yelyseyeva Mechnikov Institie of Microbiology and Immunology,
  • Ye Babych Mechnikov Institie of Microbiology and Immunology,
  • L Zhdamarova Mechnikov Institie of Microbiology and Immunology,
  • V Belozersky Mechnikov Institie of Microbiology and Immunology,
  • Ye Isayenko Mechnikov Institie of Microbiology and Immunology,
  • S Kolpak Mechnikov Institie of Microbiology and Immunology,

Keywords:

adhesion, pili, C. diphtheriaе, anti-adhesion therapy, antibacterial immunity, diphtheria vaccines

Abstract

The emergence and increasing prevalence of bacterial strains that cause infectious diseases and that are resistant to available antibiotics demand the discovery of new therapeutic strategies. For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. A modern alternative approach to antimicrobial therapy is targeting bacterial virulence and specifically adhesion as one of virulence factors. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. The article deals with some modern strategies for anti-adhesion therapy, the mechanisms of inhibition pathogen adherence, immunization using a bacterial adhesion, an adhesin subunit or an immunogenic peptide fragment and a DNA vaccine encoding the adhesin or part thereof and so on. Investigation of bacterial pili which orchestrate the colonization of host tissues is the area most in need of further study. Bacterial pili may be vaccine candidates in important human pathogens as being highly immunogenic structures which are under the selective pressure of host immune responses. C. diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about its factors crucial for colonization of the host. Adherence factors of Corynebacteria may be considered as probable components of developing of combined diphtheria vaccines with antibacterial action which localizes a diphtheritic infection in an organism. They’ll become an effective method against a resistant carrier state and be forward to stopping of pathogen circulation among human population.

References

Cusumano, C. K. Bacterial adhesion--a source of alternate antibiotic targets [Text] / C. K. Cusumano, S. J. Hultgren [Text] //Drugs. 2009 Nov;12(11):699-705.

Cegelski, L. The biology and future prospects of antivirulence therapies [Text] / L. Cegelski, G. R. Marshall, G. R. Eldridge, S. J. Hultgren //Nat Rev Microbiol. 2008 Jan; 6(1):17-27.

Zigangirova, N. A. Target-specific screening of antivirulence preparations for chronic infection therapy [Text] / N. A. Zigangirova, A. L. Gintsburg //Zh Mikrobiol Epidemiol Immunobiol. 2011 Jul-Aug; (4):107-15.

Shoaf-Sweeney, K. D. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host [Text] /Shoaf-Sweeney K. D., Hutkins R. W.//Adv Food Nutr Res. 2009; 55:101-61. doi: 10.1016/S1043-4526(08)00402-6.

Pruzzo, C. Bacterial adhesins in the prophylaxis and therapy of infections [Text] / C. Pruzzo, G. Satta // Quad Sclavo Diagn 1986 Mar; 22(1):68-77.

Scott, J. R. Pili with strong attachments: Gram-positive bacteria do it differently [Text] / J. R. Scott, D. Zähner // Mol Microbiol. 2006 Oct; 62(2):320-30. Epub 2006 Sep 15

Cozens, D. Anti-adhesion methods as novel therapeutics for bacterial infections [Text] / D. Cozens,R. C. Read //Expert Rev Anti Infect Ther. 2012 Dec;10(12):1457-68. doi: 10.1586/eri.12.145.

Krachler, A. M. Targeting the bacteria-host interface: strategies in anti-adhesion therapy [Text] / A. M. Krachler, K. Orth //Virulence. 2013 May 15;4(4):284-94. doi: 10.4161/viru.24606.

Ofek, I. Anti-adhesion therapy of bacterial diseases: prospects and problems [Electronic resource] / I. Ofek, D. L. Hasty, N. Sharon //FEMS Immunol Med Microbiol. 2003 Oct 15;38(3):181-91.- Access : http://onlinelibrary.wiley.com/doi/10.1016/S0928-8244(03)00228-1/full

Escaich, S. Novel agents to inhibit microbial virulence and pathogenicity [Electronic resource] / S. Escaich [et al.] //Expert Opin Ther Pat. 2010 Oct;20(10):1401-18. doi: 10.1517/13543776.2010.511176.- Access : http://www.ncbi.nlm.nih.gov/pubmed/20718591

Kisiela, D. I. Conformational inactivation induces immunogenicity of the receptor-binding pocket of a bacterial adhesin [Text] / D. I. Kisiela, V. B. Rodriguez, V. Tchesnokova, H. Avagyan, P. Aprikian, Y. Liu, X. R. Wu, W. E. Thomas, E. V. Sokurenko //Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19089-94. doi: 10.1073/pnas.1314395110. Epub 2013 Nov 4.

Lorenzo-Gómez, M. F. Evaluation of a therapeutic vaccine for the prevention of recurrent urinary tract infections versus prophylactic treatment with antibiotics [Electronic resource] / M. F. Lorenzo-Gómez, B. Padilla-Fernández, F. J. García-Criado, J. A. Mirón-Canelo, A. Gil-Vicente, A. Nieto-Huertos [et al.] // Int Urogynecol J. 2013;24:127–34. doi: 10.1007/s00192-012-1853-5.- Access: : http://www.ncbi.nlm.nih.gov/pubmed/22806485

Ghosh, S. An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development [Electronic resource] / S. Ghosh, K. Chakraborty, T. Nagaraja, S. Basak, H. Koley, S. Dutta [et al.] // Proc Natl Acad Sci U S A. 2011;108:3348–53. doi: 10.1073/pnas.1016180108. - Access : http://www.ncbi.nlm.nih.gov/pubmed/21300870

Wagner, C. Adhesive mechanisms of Salmonella enterica [Electronic resource] / C. Wagner, M. Hensel //Adv Exp Med Biol. 2011;715:17–34. doi: 10.1007/978-94-007-0940-9_2. - Access : http://www.ncbi.nlm.nih.gov/pubmed/21557055

Bravo, D. Type IV(B) pili are required for invasion but not for adhesion of Salmonella enterica serovar Typhi into BHK epithelial cells in a cystic fibrosis transmembrane conductance regulator-independent manner [Electronic resource] / D. Bravo, C. J. Blondel, A. Hoare, L. Leyton, M. A. Valvano, I. Contreras // Microb Pathog. 2011;51:373–7. doi: 10.1016/j.micpath.2011.07.005.- Access : http://www.ncbi.nlm.nih.gov/pubmed/21782926

Raghunathan, D. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection [Electronic resource] / D. Raghunathan, T. J. Wells, F. C. Morris, R. K. Shaw, S. Bobat, S. E. Peters [et al.] // Infect Immun. 2011;79:4342–52. doi: 10.1128/IAI.05592-11. - Access : http://www.ncbi.nlm.nih.gov/pubmed/21859856

Zhang, C. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli [Electronic resource] / C. Zhang, W. Zhang // Clin Vaccine Immunol. 2010;17:1859–67. doi: 10.1128/CVI.00251-10. - Access : http://www.ncbi.nlm.nih.gov/pubmed/20980482

Gao, X. Novel fusion protein protects against adherence and toxicity of enterohemorrhagic Escherichia coli O157:H7 in mice [Electronic resource] / X. Gao, K. Cai, T. Li, Q. Wang, X. Hou, R. Tian [et al.] //Vaccine. 2011;29:6656–63. doi: 10.1016/j.vaccine.2011.06.106. - Access :

http://www.ncbi.nlm.nih.gov/pubmed/21742003

Langermann, S. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination [Electronic resource] / S. Langermann, S. Palaszynski, M. Barnhart, G. Auguste, J. S. Pinkner, J. Burlein [et al.] // Science. 1997;276:607–11. doi: 10.1126/science.276.5312.607.- Access : http://www.ncbi.nlm.nih.gov/pubmed/9110982

Langermann, S. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli [Electronic resource] / S. Langermann, R. Möllby, J. E. Burlein, S. R. Palaszynski, C. G. Auguste, A. DeFusco [et al.] //J Infect Dis. 2000;181:774–8. doi: 10.1086/315258. – Access : http://jid.oxfordjournals.org/content/181/2/774.long

Cachia, P. J. Synthetic peptide vaccine and antibody therapeutic development: prevention and treatment of Pseudomonas aeruginosa [Electronic resource] / P. J. Cachia, R. S. Hodges //Biopolymers. 2003;71:141–68. doi: 10.1002/bip.10395. - Access : http://www.ncbi.nlm.nih.gov/pubmed/12767116

Sheth, H. B. Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein [Electronic resource] / H. B. Sheth, L. M. Glasier, N. W. Ellert, P. Cachia, W. Kohn, K. K. Lee [et al.] //Biomed Pept Proteins Nucleic Acids. 1995;1:141–8.

Serruto, D. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens [Electronic resource] / D. Serruto, M. J. Bottomley, S. Ram, M. M. Giuliani, R. Rappuoli //Vaccine. 2012;30(Suppl 2):B87–97. doi: 10.1016/j.vaccine.2012.01.033. - Access : http://www.ncbi.nlm.nih.gov/pubmed/22607904

Su E. L. A combination recombinant protein and outer membrane vesicle vaccine against serogroup B meningococcal disease [Electronic resource] / E. L. Su, M. D. Snape // Expert Rev Vaccines. 2011;10:575–88. doi: 10.1586/erv.11.32.- Access : http://www.ncbi.nlm.nih.gov/pubmed/21604979

Findlow, J. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant Meningococcal serogroup B vaccine with and without

outer membrane vesicles, administered in infancy [Electronic resource] / J. Findlow, R. Borrow, M. D. Snape, T. Dawson, A. Holland, T. M. John, et al. // Clin Infect Dis. 2010;51:1127–37. doi: 10.1086/656741. - Access : http://www.ncbi.nlm.nih.gov/pubmed/20954968

Hazenbos, W. L. Bordetella pertussis fimbriae bind to human monocytes via the minor fimbrial subunit FimD [Electronic resource] / W. L. Hazenbos, C. A. Geuijen, B. M. van den Berg [et al.] // The Journal of Infectious Diseases. – 1995. – Vol. 171, № 4. – Р. 924–929. – Access : http://www.ncbi.nlm.nih.gov/pubmed/7706820

Knight, J. B. Immunogenicity and protective efficacy of a recombinant filamentous haemagglutinin from Bordetella pertussis [Electronic resource] / J. B. Knight, Y. Y. Huang, S. A. Halperin [et al.] // Clinical and Experimental Immunology. – 2006. – Vol. 144, № 3. – Р. 543–551. –

Access : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941966/

Novotny, Р. A novel bivalent acellular pertussis vaccine based on the 69 kDa protein and FHA [Electronic resource] / Р. Novotny, A. P. Chubb, К. Cownley [et al.] // Dev Biol Stand. – 1991. – № 73. – Р. 243–249. – Access : http://www.ncbi.nlm.nih.gov/pubmed/1778316

Alonso, S. Eighty–kilodalton N–terminal moiety of Bordetella pertussis filamentous hemagglutinin: adherence, immunogenicity, and protective role [Electronic resource] / S. Alonso, N. Reveneau, K. Pethe [et al.] / Infection and Immunity. – 2002. – Vol. 70, № 8. – Р. 4142–4147. – Access : http://www.ncbi.nlm.nih.gov/pubmed/12117922

Pat. 7,479,283 United States, A61K39/10; A61K39/02; A61K39/00. Acellular pertussis vaccine comprising a combination of the 69 kDa and the filamentous haemagglutinin antigens of Bordetella pertussis. [Text] / N. Pavel ; Assignees UCB Pharma Limited. – Appl. № 08/450,336 ; Filed : 25.05.1995 ; Publication Date 20.01.2009.

Hijnen, М. The Bordetella pertussis virulence factor P.69 pertactin retains its immunological properties after overproduction in Escherichia coli [Electronic resource] / М. Hijnen, P. G. van Gageldonk , G. A. Berbers [et al.] // Protein Expression and Purification. – 2005. – Vol. 41, № 1. – Р. 106–112. – Access : http://www.elsevier.com/wps/find/journaldescription.cws_home/622935

Hijnen, М. Epitope structure of the Bordetella pertussis protein P.69 pertactin, a major vaccine component and protective antigen [Electronic resource] / М. Hijnen, F. R. Mooi, P. G. van Gageldonk [et al.] // Infection and Immunity. – 2004. – Vol. 72, № 7. – Р. 3716–3723. – Access : http://www.ncbi.nlm.nih.gov/pubmed/15213111

Leininger, E. Pertactin, an Arg–Gly–Asp–Containing Bordetella pertussis Surface Protein That Promotes Adherence of Mammalian Cells [Electronic resource] / E. Leininger, M. Roberts, J. G. Kenimer [et al.] // Proceedings of the National Academy of Sciences of the United States of America. – 1991. – Vol. 88, № 2. – Р.345–349. – Access : http://www.pnas.org/content/88/2/345.full.pdf.

Hallander H. O. Efficacy and effectiveness of acellular pertussis vaccines: a 20–year Swedish experience [Electronic resource] / H. O. Hallander, L. Gustafsson // Expert Review of Vaccines. – 2009. – Vol. 8, № 10. – P. 1303–1307. – Access : http://www.ncbi.nlm.nih.gov/pubmed/19803750

Semenova, I. B. Immunomodulation activity of new vaccines for pertussis prophylaxis--acellular pertussis vaccine and adsorbed DPT vaccine with acellular component [Text] / Semenova I. B., T. N. Remova, I. G. Bazhanova, M. V. Britsina, N. S. Zakharova //Zh Mikrobiol Epidemiol Immunobiol. 2004 Jan-Feb;(1):45-9. Russian. PMID: 15024981/

Poolman, J. T. Acellular pertussis vaccines and the role of pertactin and fimbriae [Electronic resource] / J. T. Poolman , H. O. Hallander // Expert Review of Vaccines. – 2007. – Vol. 6, № 1. – Р. 47–56. – Access:

http://www.expert–reviews.com/loi/erv.

Hallander, H. O. Should fimbriae be included in pertussis vaccines? Studies on ELISA IgG anti–Fim2/3 antibodies after vaccination and infection [Electronic resource] / H. O. Hallander , M. L. Jungman, M. Jahnmatz [et al.] // APMIS. – 2009. – Vol. 117, № 9. – Р. 660–671. – Access : http://www.wiley.com/bw/journal.asp?ref=0903–4641

Hur, J. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model [Electronic resource] / J. Hur, B. D. Stein, J. H. Lee // Can J Vet Res. 2012;76:186–94. [PMC free article] [PubMed] .- Access :http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384281

Hur, J. Development of a novel live vaccine delivering enterotoxigenic Escherichia coli fimbrial antigens to prevent post-weaning diarrhea in piglets [Electronic resource] / J. Hur, J. H. Lee // Vet Immunol Immunopathol. 2012;146:283–8. doi: 10.1016/j.vetimm.2012.02.002. - Access : http://www.ncbi.nlm.nih.gov/pubmed/22417986

Frazer, L. T. Vaccination with recombinant adhesins from the RgpA-Kgp proteinase-adhesin complex protects against Porphyromonas gingivalis infection [Text] / L. T. Frazer, N. M. O'Brien-Simpson, N. Slakeski, K. A. Walsh, P. D. Veith, C. G. Chen, I. G. Barr, E. C. Reynolds //Vaccine. 2006 Oct 30;24(42-43):6542-54. Epub 2006 Jun 23.

O'Brien-Simpson, N. M. An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss [Text] / N. M. O'Brien-Simpson, R. D. Pathirana, R. A. Paolini, Y. Y. Chen, P. D. Veith, V. Tam, N. Ally, R. N. Pike, E. C. Reynolds //J Immunol. 2005 Sep 15;175(6):3980-9.

Pathirana, R. D. Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis [Text] /Pathirana R. D., O'Brien-Simpson N. M., Veith P. D., Riley P. F., Reynolds E. C.//Microbiology. 2006 Aug;152(Pt 8):2381-94.

Li, L. The future of human DNA vaccines/ L. Li, F. Saade, N. Petrovsky// J Biotechnol. Dec 31, 2012; 162(2-3): 171–182. – Published online Sep 7, 2012. doi: 10.1016/j.jbiotec.2012.08.012.- Access : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511659/

Arciola, C. R. Perspectives on DNA vaccines. Targeting staphylococcal adhesins to prevent implant infections [Electronic resource] / C. R. Arciola, P. Speziale, L. Montanaro //Int J Artif Organs. 2009;32:635–41. - Access : http://www.ncbi.nlm.nih.gov/pubmed/19882551

Therrien, R. Lack of protection of mice against Staphylococcus aureus despite a significant immune response to immunization with a DNA vaccine encoding collagen-binding protein [Electronic resource] / R. Therrien, P. Lacasse, G. Grondin, B. G. Talbot //Vaccine. 2007;25:5053–61. doi: 10.1016/j.vaccine.2007.04.067. - Access : http://www.sciencedirect.com/science/article/pii/S0264410X07004549

Gaudreau, M. C. Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus [Electronic resource] / Gaudreau M. C., Lacasse P., Talbot B. G. //Vaccine. 2007;25:814–24. doi: 10.1016/j.vaccine.2006.09.043.- Access : http://www.sciencedirect.com/science/article/pii/S0264410X06010401

Gaudreau MC, Lacasse P, Talbot BG. Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus. Vaccine. 2007;25:814–24. doi: 10.1016/j.vaccine.2006.09.043. - Access :

http://www.sciencedirect.com/science/article/pii/S0264410X06010401

Wizemann, T. M. Adhesins as targets for vaccine development [Electronic resource] / T. M. Wizemann, J. E. Adamou, S. Langermann // Emerg Infect Dis. 1999;5:395–403. doi: 10.3201/eid0503.990310. - Access :http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640765/

Danne, C. Pili of gram-positive bacteria: roles in host colonization [Text] / C. Danne, S. Dramsi //Res Microbiol. 2012 Nov-Dec;163(9-10):645-58. doi: 10.1016/j.resmic.2012.10.012. Epub 2012 Oct 29.

Chang, C. Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae [Electronic resource] / C. Chang, A. Mandlik, A. Das, H. Ton-That //Mol Microbiol. 2011 Mar; 79(5):1236-47. doi: 10.1111/j.1365-2958.2010.07515.x. Epub 2011 Jan 5.- Аccess : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043122/

Ankri, S. Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA [Electronic resource] / S. Ankri, O. Reyes, G. Leblon // Plasmid. 1996;35:62–66. - Аccess :

http://www.sciencedirect.com/science/article/pii/S0147619X96900074

Budzik, J. M. Assembly of pili on the surface of Bacillus cereus vegetative cells [Electronic resource] /J. M. Budzik, L. A. Marraffini, O. Schneewind// Mol Microbiol. 2007;66:495–510. - Аccess :

http://www.ncbi.nlm.nih.gov/pubmed/17897374

Budzik, J. M. Sortase D Forms the Covalent Bond That Links BcpB to the Tip of Bacillus cereus Pili [Electronic resource] / J. M. Budzik, S. Y. Oh, O. Schneewind //J Biol Chem. 2009;284:12989–12997.- Аccess :

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676031/?report=classic

Comfort, D. A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria [Electronic resource] / D. Comfort, R. T. Clubb // Infect Immun. 2004;72:2710–2722.- Аccess:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387863/

Kline, K. A. A tale of two pili: assembly and function of pili in bacteria [Text] / K. A. Kline, K. W. Dodson, M. G. Caparon, S. J. Hultgren // Trends Microbiol. 2010 May;18(5):224-32. doi: 10.1016/j.tim.2010.03.002. Epub 2010 Apr 8.

Ton-That, H. Assembly of pili on the surface of Corynebacterium diphtheria [Text] / H. Ton-That, O. Schneewind //Mol Microbiol. 2003 Nov;50(4):1429-38

Waksman, G. Structural biology of the chaperone-usher pathway of pilus biogenesis [Text] / G. Waksman, S. J. Hultgren //Nat Rev Microbiol. 2009 Nov;7(11):765-74. doi: 10.1038/nrmicro2220. Epub 2009 Oct 12.

Mandlik, A. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development [Electronic resource] / A. Mandlik, A. Swierczynski, A. Das, H. Ton-That // Trends Microbiol. 2008 Jan;16(1):33-40.- Аccess : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841691/

Navarre, W. W. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope [Electronic resource] / W. W. Navarre, O. Schneewind //Microbiol Mol Biol Rev. 1999; 63:174–229. – Access : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98962/

Mokrousov, I. Corynebacterium diphtheriae: genome diversity, population structure and genotyping perspectives [Text] / I. Mokrousov //Infect Genet Evol. 2009 Jan;9(1):1-15. doi: 10.1016/j.meegid.2008.09.011. Epub 2008 Oct 19.- Аccess :

http://www.sciencedirect.com/science/article/pii/S1567134808001810

Gomes, D. L. Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence [Text] / D. L. Gomes, C. A. Martins, L. M. Faria, L. S. Santos, C. S. Santos, P. S. Sabbadini, M. C. Souza, G. B. Alves, A. C. Rosa, P. E. Nagao, G. A. Pereira, R. Jr. Hirata, A. L. Mattos-Guaraldi //J Med Microbiol. 2009 Nov;58(Pt 11):1419-27. doi: 10.1099/jmm.0.012161-0. Epub 2009 Jul 23.- Access : http://jmm.sgmjournals.org/content/58/11/1419.long

Kharseeva, G. G. The ability of diphtheria causative agent to form biofilm [Text] / G. G. Kharseeva, AIu. Mironov, Ia. N. Frolova, A. V. Labushkina //Klin Lab Diagn. 2013 Feb;(2):36-8.

Mandlik, A. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria [Text] / A. Mandlik, A. Das, H. Ton-That //Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14147-52. doi: 10.1073/pnas.0806350105. Epub 2008 Sep 8.

Dramsi, S. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria [Electronic resource] / S. Dramsi, P. Trieu-Cuot, H. Bierne // Res Microbiol. 2005;156:289–297.- Аccess :

http://www.ncbi.nlm.nih.gov/pubmed/15808931

Gaspar, A. H., Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheria [Electronic resource] / A. H. Gaspar, H. Ton-That // J Bacteriol. 2006;188:1526–1533. - Аccess :

http://www.ncbi.nlm.nih.gov/pubmed/16452436

Chyudnaya, L. М. Epidemiological situation regarding to diphtheria in Ukraine [Теxt] / L. М. Chyudnaya, V. G. Oxiyuk, L. S. Krasyuk, L. V. Моrоz, S. I. Bryzhata, I. М. Skuratovskaya, Ye. V. Demichovskaya // Epidemiology and infectious diseases. – 1999. – № 1. – P. 10-12. – Bibl. p. 12 (1 name). – ISSN 1560-9529.

Kolodkina, V. Molecular epidemiology of C. diphtheriae strains during different phases of the diphtheria epidemic in Belarus [Теxt] / V. Kolodkina, L. Titov, T. Sharapa, F. Grimont, P. A. D. Grimont, A. Efstratiou // BMC Infect Dis. – 2006. – V. 6. – Р. 129-137. – Тираж 1560. – ISSN 0372-9311.

Kostyukova, N. N. The lessons of diphtheria [Теxt] / N. N. Kostyukova // Zh Mikrobiol Epidemiol Immunobiol., 1999. – № 2. – P. 92-96. – ISSN 0372-9311.

Mattos-Guaraldi, A. L. Diphtheria remains a threat to health in the developing world – an overview [Теxt] / A. L. Mattos-Guaraldi, L. O. Moreira, P. V. Damasco, R. Hirata Júnior // Mem. Inst. Oswaldo Cruz. – 2003. – V. 98. – Р. 987–989.

Dalal, A. Corynebacterium minutissimum bacteremia and meningitis: a case report and review of literature [Electronic resource] / A. Dalal, R. Likhi // J Infect. 2008 Jan;56(1):77-9. Epub 2007 Nov 26.- Аccess :

http://www.ncbi.nlm.nih.gov/pubmed/18036665?dopt=Abstract

Tseneva, GIa. Pathogenic properties of Corynebacterium diphtheriae [Text] / GIa Tseneva, E. E. Shchederkina //Zh Mikrobiol Epidemiol Immunobiol. 2000 Nov-Dec;(6):10-3.

Kharseeva, G. G. Pathogenicity of Corynebacterium diphtheriae circulating in Rostov-on-Don City and Rostov region during interepidemic period [Text]/ G. G. Kharseeva, E. P. Moskalenko, A. L. Trukhachev, T. V. Mitrofanova //Zh Mikrobiol Epidemiol Immunobiol. 2006 Sep-Oct;(6):6-9.

Makarenkova, I. D. Pathogenicity factors of Corynebacterium diphtheriae circulating in the Primorski region under conditions of mass immunization of population [Text] / I. D. Makarenkova, T. S. Zaporozhets, N. N. Besednova, Iu. N. Khoroshevskaia, G. K. Cherdantseva //Zh Mikrobiol Epidemiol Immunobiol. 2000 Nov-Dec;(6):6-9.

Ott, L. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells [Text] / L. Ott, M. Höller, J. Rheinlaender, T. E. Schäffer, M. Hensel, A. Burkovski //BMC Microbiol. 2010 Oct 13;10:257. doi: 10.1186/1471-2180-10-257.

Patent 2019181(RU), A61K35/66 /A method of increasing nonspecific resistance and method for producing the drug to enhance nonspecific resistance [Text] / Shmelyova, Ye. О. // Filing Date : 25.05.1992. Publicated : 15.09.1994.

Shmelyeva, Ye. А. Characteristics of diphtheria bacterial vaccine and results of its study in experiment and in human research [Теxt] / Ye. А. Shmelyeva, D. P. Nikitin, А. N. Kuzikov, L. М. Yarovaya, V. P. Bochkova, S. S. Markina, N. N. Kondrashina // Theses of V All-Russian microbiologists and epidemiologists congress reports, (22 – 24 october 1985, krasnodar). – М. – 1985.– P. 69-71. – 356 [2] p. – Number of copies 1200.

Rogers, E. A. Adhesion by pathogenic corynebacteria [Text] / H. E. Mei, T. Yoshida, W. Sime, F. Hiepe, K. Thiele, R. A. Manz, A. Radbruch, T. Dörner // Adv Exp Med Biol. 2011;715:91-103. doi: 10.1007/978-94-007-0940-9.- Аccess : http://www.ncbi.nlm.nih.gov/pubmed/21557059

Kolodkina, V. Identification of Corynebacterium diphtheriae gene involved in adherence to epithelial cells [Text] / V. Kolodkina, T. Denisevich, L. Titov //Infect Genet Evol. 2011 Mar;11(2):518-21. doi: 10.1016/j.meegid.2010.11.004. Epub 2010 Nov 24.

Yanagawa, R. Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium [Electronic resource] / R. Yanagawa, E. Honda // Infect Immun. 1976;13:1293–1295. - Аccess :

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420751/

Zasada, A. A. Occurence of pili genes in Corynebacterium diphtheriae strains [Text]/ A. A. Zasada, K. Formińska, M. Rzeczkowska // Med Dosw Mikrobiol. 2012;64(1):19-27.

Swaminathan, A. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae [Text] / A. Swaminathan, A. Mandlik, A. Swierczynski, A. Gaspar, A. Das, H. Ton-That // Mol Microbiol. 2007 Nov;66(4):961-74. Epub 2007 Oct Mol Microbiol. 2007 Nov;66(4):961-74. Epub 2007 Oct 4.

Ton-That, H. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheria [Text] / H. Ton-That, L. A. Marraffini, O. Schneewind // Microbiol. 2004 Jul;53(1):251-61.

Moreira, L. O. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells [Text] / L. O. Moreira, A. L. Mattos-Guaraldi, A. F. Andrade//Arch Microbiol. 2008 Nov;190(5):521-30. doi: 10.1007/s00203-008-0398-y. Epub 2008 Jun 25.

Gomes, D. L. SubMICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains [Text] / D. L. Gomes, R. S. Peixoto, E. A. Barbosa, F. Napoleão, P. S. Sabbadini, K. R. dos Santos, A. L. Mattos-Guaraldi, R. Jr. Hirata // J Med Microbiol. 2013 May;62(Pt 5):754-60. doi: 10.1099/jmm.0.052373-0. Epub 2013 Feb 28.

Hladka, O. A. The effect of antibiotics on the adhesion of Corynebacterium diphtheriae to buccal epithelial cells [Text] /O. A. Hladka, O. I. Motyka// Mikrobiol Z. 1998 Mar-Apr;60(2):60-4.

Downloads

How to Cite

Yelyseyeva, I., Babych, Y., Zhdamarova, L., Belozersky, V., Isayenko, Y., & Kolpak, S. (2020). Anti-adhesive therapies as a contemporary means to fight infectious diseases and adherence factors of Corynebacteria diphtheriae. Annals of Mechnikov’s Institute, (2), 7–19. Retrieved from https://journals.uran.ua/ami/article/view/207922

Issue

Section

Reviews