The molecular mechanisms of Epstein-Barr virus persistence in the human organism

Authors

  • A Volyanskiy Mechnikov Institute of Microbiology and Immunology,
  • T Kolotova Mechnikov Institute of Microbiology and Immunology,
  • E Romanova Mechnikov Institute of Microbiology and Immunology,
  • T Sidorenko Mechnikov Institute of Microbiology and Immunology,
  • N Igumnova Mechnikov Institute of Microbiology and Immunology,
  • E Konoreva Mechnikov Institute of Microbiology and Immunology,
  • V Yukhimenko Mechnikov Institute of Microbiology and Immunology,
  • T Kabluchko Mechnikov Institute of Microbiology and Immunology,
  • M Pogorila Mechnikov Institute of Microbiology and Immunology,

Keywords:

Epstein-Barr virus, persistence, virus lytic replication, phase of latency, chronic active EBV infection

Abstract

This review describes advances in molecular aspects of EBV infection and disease. We discuss the spectrum of clinical illness due to EBV persistent infection. The main characteristic of Epstein-Barr virus (EBV) is that initial infection results in lifelong persistence. EBV infects nearly all humans by the time they reach adulthood. Healthy humans have approximately 1 to 50 infected cells per million leukocytes. EBV is one of the eight known human herpesviruses. EBV virions have a double-stranded linear DNA and 100 genes had been described in virus genome. Initial infection is thought to occur in the oral compartment. The host cells of EBV are mainly lymphocytes and epithelial cells. EBV attaches to B cells via binding of the viral gp350 protein to CD21 receptor. The consequence of EBV infection is cells proliferation and differentiation into memory B lymphocyte in the germinal center. Infected memory B cells are released into the peripheral circulation. EBV persists mostly in the memory B cell. Latency is the state of persistent viral infection without active viral production. In latently infected B cells EBV virus exist as episomes. During the latent phase episomal replication occurs via host DNA polymerase. Genes of the nuclear antigens (EBNA) and latent membrane proteins (LMP) are transcribed during latency. These include EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNA leader protein (EBNALP), LMP1 and LMP2 genes. All nuclear antigens are transcription transactivators which bind to cis-regulatory DNA elements of cell or virus genomes directly or in complex with other proteins. LMP2A and LMP1 can function to coordinately mimic B-cell receptor and CD40 coreceptor signaling in latently infected B cells. LMP proteins activate cell signaling systems and as the consequence different gene expression programs. Characterization of gene expression patterns in different cell lines and pathologic conditions has revealed that there are at least three different latency programs. During I phase of latency latent EBV genomes can multiply in dividing memory B cells, during II phase of latency virus can induce and modulate B-cell differentiation, during III phase of latency virus can activate proliferation of the naïve B cells, during 0 phase of latency virus completely down regulates expression all protein coding genes. Latently infected B cells can occasionally be stimulated to reactivate EBV. Viral proteins BZLF1 and BRLF1 act as transactivators of the viral lytic program. The early reactivated virus gene products have such function as replication, metabolism and blockade of antigen processing. DNA polymerase replicates linear viral genome during the lytic phase. The late products code the structural proteins such as the viral capsid antigens (VCA) and gene products used for immune evasion. In healthy carriers virus exists in resting memory B lymphocytes in 0 phase of latency. The intensive virus reactivation in lytic replication phase or virus persistence in I, II and III latent phases promotes the development of such disease as lymphomas, rheumatoid arthritis, systemic erythematous lupus, chronic fatigue syndrome, etc. EBNA1 is expressed in the type I latency program, which is active in Burkitt’s lymphoma. EBNA1 and LMP1/2 are expressed in the type II latency program, which is observed in Hodgkin’s lymphoma. LMP1 and LMP2 expression activate proliferation program in the cell. The type III latency program, in which all of the latency gene products are expressed, is often detected during acute infectious mononucleosis or in virus infected B cell line and in inimmunocompromised individuals after tissue transplantation. Immunodeficiency-related B-cell posttransplant lymphoproliferative disorders (PTLDs) are caused directly by EBV. Chronic active EBV (CAEBV) infection develops due to the inappropriate viral load. This disease is characterized by chronic infectious mononucleosis-like symptoms with illness lasting for 6-24 months and in the course of the disease lymphoproliferative disorders like T or NK cell lymphomas may arise. The determined pattern of latent gene expression during CAEBV is latency type II. In this review we sum up the existing data linking EBV with rheumatoid arthritis and systemic erythematous lupus. SLE patients have abnormally high expression of several viral mRNAs coding for BZLF1, gp350, viral IL10, LMP1, LMP2 and EBNA1. So during this pathology EBV persists in litic and in latent phases.  Also it has been demonstrated the humoral response to both latent and lytic EBV antigens in both sera and synovial fluids from patients with rheumatoid arthritis. Chronic Fatigue Syndrome (CFS) is characterized by severe fatigue with typical, cognitive dysfunctions and flu-like symptoms. Numerous studies find evidence for an association of CFS with EBV. In a subset of patients CFS begins with infectious mononucleosis. Elevated antibodies against EBV dUTPase and DNA polymerase has been found in CFS patients but not in controls Consistent with these data, elevated titers antibodies to ZEBRA detected in CFS patients. These data suggest that during CFS virus reactivate and enter in lytic replication. But according to other reports EBV virus in CFS patients replicates only latently. So, in the articles we summarized the data which reveal the connection between the disease development, phase of persistence and the program of gene expression.

References

Ambinder, R. F. Mononucleosis in the laboratory [Text] / R. F. Ambinder, L. Lin // J. Infect. Dis. – 2005. – V. 192. – P.1503–04.

Kieff, E. The biology and chemistry of Epstein-Barr virus [Text] / E. Kieff // J. Infect. Dis. – 1982. – V. 146. – P.506–517.

Adams, A. Replication of latent Epstein-Barr virus genomes [Text] / A. Adams // J. Virol. – 1987. – V. 61. – P.1743–1746.

Young, L. S. Human herpesviruses biology, therapy, and immunoprophylaxis [Text] / L. S. Young, J. R. Arrand, P. G. Murray, A. Arvin, G. Campadelli-Fiume, E. Mocarski, P. S. Moore, B. Roizman, R. Whitley, K. Yamanishi [et al.] // Cambridge University Press. – 2007. – Р. 461–489.

Babcock, G. J. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell [Text] / G. J. Babcock, D. Hochberg, A. D. Thorley-Lawson // Immunity. – 2000. – V. 13. – Р.497–506.

Nanbo, A. The coupling of synthesis and partitioning of ebv's plasmid replicon is revealed in live cells[Text] / A. Nanbo, A. Sugden; B. Sugden // EMBO J. – 2007. – V. 26. – Р. 4252–62.

Westhoff Smith, D. Potential cellular functions of Epstein-Barr Nuclear Antigen 1 (EBNA1) of Epstein-Barr Virus [Text] / D. Westhoff Smith, B. Sugden // Viruses. – 2013. – V. 16. № 5. – Р.226–40.

Wilson, J. B. Expression of epstein-barr virus nuclear antigen-1 induces b cell neoplasia in transgenic mice[Text] / J. B. Wilson, J. L. Bell, A. J. Levine // EMBO J. – 1996. – № 15. – Р.3117–26.

Drotar, M. E. Epstein-barr virus nuclear antigen-1 and myc cooperate in lymphomagenesis [Text] / M. E. Drotar, S. Silva; E. Barone, D. Campbell, P. Tsimbouri, J. Jurvansu, P. Bhatia, G. Klein, J. B. Wilson // Int. J. Cancer. – 2003. – № 106. – Р.388–395.

Gruhne, B. The epstein-barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species [Text] / B. Gruhne, R. Sompallae, D. Marescotti; S. A. Kamranvar, S. Gastaldello; M. G. Masucci // Proc. Natl. Acad. Sci. USA. – 2009. – № 106. – Р. 2313–18.

Tsimbouri, P. Bcl-xl and rag genes are induced and the response to il-2 enhanced in emuebna-1 transgenic mouse lymphocytes [Text] / P. Tsimbouri, M. E. Drotar, J. L. Coy, J. B. Wilson // Oncogene. – 2002. – № 21. – Р.5182–87.

Robbiani, D. F. Aid is required for the chromosomal breaks in c-myc that lead to c-myc/igh translocations [Text] / D. F. Robbiani, A. Bothmer, E. Callen, B. Reina-San-Martin, Y. Dorsett, S. Difilippantonio, D. J. Bolland, H. T. Chen, A. E. Corcoran, A. Nussenzweig, [et al.] // Cell. – 2008. – № 135. – Р.1028–38.

Maier, S. Cellular target genes of Epstein-Barr virus nuclear antigen 2 [Text] / S. Maier, G. Staffler, A. Hartmann, J. Höck, K. Henning, K. Grabusic, R. Mailhammer, R. Hoffmann, M. Wilmanns, R. Lang, J. Mages, B. Kempkes // J Virol. – 2006. – V. 80. – № 19. – Р.9761-71.

Sung, N. S. EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus[Text] / N. S. Sung, S. Kenney, D. Gutsch, J. S. Pagano // J. Virol. – 1991. – № 65. – Р.2164–69.

Hayward, S. D. Viral interactions with the Notch pathway [Text] / S. D. Hayward // Semin. Cancer Biol. – 2004. – № 14. – Р.387–396.

Portal, D. Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2 [Text] / D. Portal, H. Zhou, B. Zhao, P. V. Kharchenko, E. Lowry, L. Wong, J. Quackenbush, D. Holloway, S. Jiang, Lu Y, E. Kieff // Proc Natl Acad Sci U S A. – 2013. – V. 12. – № 46. – Р.18537–42.

Tomkinson, B. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation [Text] / B. Tomkinson, E. Robertson, E. Kieff // J Virol. – 1993. – № 67. – Р.2014–25.

Maruo, S. Epstein-Barr Virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth [Text] / S. Maruo, E. Johannsen, D. Illanes, A. Cooper, E. Kieff // J Virol. – 2003. – № 77. – Р.10437–47.

White, R. E. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors [Text] / R. E. White, P. C. Ramer, K. N. Naresh, S. Meixlsperger, L. Pinaud [et al.] // J Clin Invest. – 2012. – № 122. – Р.1487–1502.

Bourillot, P. Y. Transcriptional repression by the Epstein-Barr virus EBNA3A protein tethered to DNA does not require RBP-Jkappa [Text] / P. Y. Bourillot, L. Waltzer, A. Sergeant, E. Manet // J Gen Virol. – 1998. – № 79. – Р.363–370.

Zhao, B. A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jk [Text] / B. Zhao, D. M. Marshall, C. E. Sample // J. Virol. – 1996. – № 70. – Р.4228–36.

Robertson, E. S. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ [Text] / E. S. Robertson, J. Lin, E. Kieff // J. Virol. – 1996. – № 70. – Р.3068–74.

Bajaj, B. G. Epstein-Barr virus nuclear antigen 3C interacts with and enhances the stability of the c-Myc oncoprotein [Text] / B. G. Bajaj, M. Murakami, Q. Cai, S. C. Verma, K. Lan, E. S. Robertson // J Virol. – 2008. – V. 82. – № 8. – Р.4082-90.

Zhao, B. Epstein-Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines [Text] / B. Zhao, J. C. Mar, S. Maruo, S. Lee, B. E. Gewurz, E. Johannsen, K. Holton, R. Rubio, K. Takada, J. Quackenbush, E. Kieff // Proc Natl Acad Sci U S A. – 2011. – V. 108. – № 1. – Р.337-342.

Swart, R. Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-kinase/Akt pathway[Text] / R. Swart, I. K. Ruf, J. Sample, R. Longnecker // J. Virol. – 2000. – № 74. – Р.10838–45.

Bultema, R. Epstein-Barr virus LMP2A accelerates MYC-induced lymphomagenesis [Text] / R. Bultema, R. Longnecker, M. Swanson-Mungerson // Oncogene. – 2009. – V. 19. – № 28. – Р.1471–76.

Engels, N. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal [Text] / N. Engels, G. Yigit, C. H. Emmerich, D. Czesnik, D. Schild, J. Wienands // Cell Commun Signal. – 2012. – V. 3. – № 10. – Р. 9.

Miller, C. L. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking [Text] / C. L. Miller, J. H. Lee, E. Kieff, R. Longnecker // Proc. Natl. Acad. Sci. USA. – 1994. – № 91. – Р.772–76.

Rechsteiner, M. P. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection [Text] / M. P. Rechsteiner, C. Berger, L. Zauner, J. A. Sigrist, M. Weber, R. Longnecker, M. Bernasconi, D. Nadal // J Virol. – 2008. – V. 82. – № 4. – Р.1739–47.

Rastelli, J. LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1 [Text] / J. Rastelli [et al.] // Blood. – 2008. – № 111. – Р.1448–55.

Graham, J. P. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1 [Text] / J. P. Graham, K. M. Arcipowski, G. A. Bishop // Immunol. Rev. – 2010. – № 237. – Р.226–48.

Pratt, Z. L. The latent membrane protein 1 (LMP1) oncogene of Epstein-Barr virus can simultaneously induce and inhibit apoptosis in B cells [Text] / Z. L. Pratt, J. Zhang, B. Sugden // J Virol. – 2012. – V. 86. – № 8. – Р.4380–93.

Kim, J. H. Epstein-Barr virus latent membrane protein 1 increases genomic instability through Egr-1-mediated up-regulation of activation-induced cytidine deaminase in B-cell lymphoma [Text] / J. H. Kim, W. S. Kim, C. Park // Leuk Lymphoma. – 2013. – V. 54. – № 9. – Р.2035–40.

Odumade, O. A. Progress and problems in understanding and managing primary Epstein_Barr virus infections [Text] / O. A. Odumade, K. A. Hogquist, H. H. Balfour // Clin Microbiol Rev. – 2011. – № 24. – Р.193–209.

Laichalk, L. L. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo [Text] / L. L. Laichalk, D. A. Thorley-Lawson // Journal of Virology. – 2005. – V. 79. – № 2. – Р.1296–07.

Luka, J. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate [Text] / J. Luka, B. Kallin, G. Klein // Virology. – 1979. – № 94. – Р.228–31.

Takada, K. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes [Text] / K. Takada, Y. Ono // J. Virol. – 1989. – № 63. – Р.445–49.

Fahmi, H. Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway [Text] / H. Fahmi, C. Cochet, Z. Hmama, P. Opolon, I. Joab // J. Virol. – 2000. – № 74. – Р.5810–18.

Shirley, C. M. 2011. Bortezomib induction of C/EBPbeta mediates Epstein-Barr virus lytic activation in Burkitt lymphoma [Text] / C. M. Shirley [et al.] // Blood. – № 117. – Р.6297–03.

Ben-Sasson, S. A. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines [Text] / S. A. Ben-Sasson, G. Klein // Int. J. Cancer. – 1981. – № 28. – Р.131–35.

Westphal, E. M. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies [Text] / E. M. Westphal, W. Blackstock, W. Feng, B. Israel, S. C. Kenney // Cancer Res. – 2000. – № 60. – Р.5781–88.

Feng, W. H. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors [Text] / W. H. Feng, B. Israel, N. Raab-Traub, P. Busson, S. C. Kenney // Cancer Res. – 2002. – № 62. – Р.1920–26.

Amon, W. Reactivation of Epstein–Barrvirus from latency [Text] / W. Amon, P. J. Farrell // Rev.Med.Virol. – 2005. – № 15. – Р.149–156.

Altmann, M. Epstein-Barr virus provides a new paradigm: A requirement for the immediate inhibition of apoptosis [Text] / M, Altmann, W. Hammerschmidt // PLoS Biol. – 2005. – V. 3. – № 12. – Р.404.

Speck, P. Epstein-Barr virus entry into cells [Text] / P. Speck, K. M. Haan, R. Longnecker. // Virology. – 2000. – № 277. – Р.1–5.

Thorley-Lawson, D. A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas [Text] / D. A. Thorley-Lawson, A. Gross // The New England Journal of Medicine. – 2004. – № 350. – Р.1328–37.

Hadinoto, V. The dynamics of EBV shedding implicate a centralrole for epithelial cells in amplifying viral output [Text] / V. Hadinoto, M. Shapiro, C. C. Sun, D. A. Thorley-Lawson. // PLoS Pathogens.– 2009. – V. 5. – № 7. – Р.496.

Al Tabaa, Y. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells [Text] / Y. Al Tabaa, E. Tuaillon, K. Bollore, V. Foulongne, G. Petitjean, J. M. Seigneurin, C. Duperray, C. Desgranges, J. P. Vendrell // Blood. – 2009. – V. 15. – № 113. – Р.604–11.

Tattevin, P. Increasing incidence of severe Epstein-Barr virus-related infectious mononucleosis: surveillance study [Text] / P. Tattevin, Y. Le Tulzo, S. Minjolle [et al.] // Journal of Clinical Microbiology. – 2006. – V. 44. –№ 5. – Р.1873–74.

Robinson, R. G. Abdominal complications of infectious mononucleosis [Text] / R. G. Robinson // J. Am. Board Fam. Pract. – 1988. – № 1 – Р. 207–210.

White, L. R. Review of the clinical manifestations, laboratory findings, and complications of infectious mononucleosis [Text] / L. R. White, P. S. Karofsky // Wis. Med. J. – 1985. – № 84. – Р.19–25.

Jenson, H. B. Acute complications of Epstein-Barr virus infectious mononucleosis [Text] / H. B. Jenson // Curr. Opin. Pediatr. – 2000. – № 12. – Р.263–268.

Hoagland, R. J. Splenic rupture in infectious mononucleosis [Text] / R. J. Hoagland, H. M. Henson // Ann. Intern. Med. – 1957. – № 46. – Р.1184–91.

Loren, A. W. Posttransplant lymphoproliferative disorder: a review [Text] / A. W. Loren, D. L. Porter, E. A. Stadtmauer, D. E. Tsai // Bone Marrow Transplant. – 2003. – № 31. – Р.145–155.

Kapatai, G. Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma [Text] / G. Kapatai, P. Murray // J Clin Pathol. – 2007. – V. 60. № 12. – Р.1342–9.

Bornkamm, G. W. Epstein-Barr virus and its role in the pathogenesis of Burkitt’s lymphoma: an unresolved issue [Text] / G. W. Bornkamm // Semin Cancer Biol. – 2009. – V. 19. – № 6. – Р.351–365.

Kimura, H. Pathogenesis of chronic active Epstein-Barr virus infection:is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? [Text] / H. Kimura // Rev. Med. Virol. – 2006. – № 16. – Р.251–261.

Okano, M. Severe chronic active Epstein-Barr virus infection syndrome [Text] / M. Okano [et al.] // Clin. Microbiol. Rev. – 1991. – № 4. – Р.129–135.

Kimura, H. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection [Text] / H. Kimura [et al.] // Blood. – 2001. – № 98. – Р.280–286.

Okano, M. Epstein-Barr virus and human diseases: recent advances in diagnosis [Text] / M. Okano, G. M. Thiele, J. R. Davis, H. L. Grierson, D. T. Purtilo // Clin. Microbiol. Rev. – 1988. – № 1. – Р.300–312.

Iwata, S. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection [Text] / S. Iwata, K. Wada, S. Tobita, K. Gotoh, Y. Ito, A. Demachi-Okamura, N. Shimizu, Y. Nishiyama, H. Kimura // J Gen Virol. – 2010. – V. 91. – № 1. – Р.42–50.

Gotoh, K. Clinical and virological characteristics of 15 patients with chronic active Epstein-Barr virus infection treated with hematopoietic stem cell transplantation [Text] / K. Gotoh [et al.] // Clin. Infect. Dis. – 2008. – № 46. – Р.1525–34.

Cohen, J. I. Optimal treatment for chronic active Epstein-Barr virus disease [Text] / J. I. Cohen // Pediatr. Transplant. – 2009. – № 13. – Р.393–396.

Gross, A. J. EBV and systemic lupus erythematosus: a new perspective [Text] / A. J. Gross, D. Hochberg, W. M. Rand, D. A. Thorley-Lawson // Journal of Immunology. – 2005. – V. 174. –№ 11. – Р.6599–07.

Lu, J. J.-Y. Association of Epstein-Barr virus infection with systemic lupus erythematosus in Taiwan [Text] / J. J.-Y. Lu, D.-Y. Chen, C.-W. Hsieh, J.-L. Lan, F.-J. Lin, S.-H. Lin // Lupus. – 2007. – V. 16. – № 3. – Р.168–175.

Poole, B. D. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus [Text] / B. D. Poole, A. K. Templeton, J. M. Guthridge, E. J. Brown, J. B. Harley, J. A. James // Autoimmunity Reviews. – 2009. – V. 8. – № 4. – Р.337–342.

Takei, M. Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients [Text] / M. Takei, K. Mitamura, S. Fujiwara [et al.] // International Immunology. – 1997. – V. 9. –№ 5. – Р.739–743.

Balandraud, N. Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction [Text] / N. Balandraud, J. B. Meynard, I. Auger [et al.] // Arthritis and Rheumatism. – 2003. – V. 48. –№ 5. – Р.1223–28.

Croia, C. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis [Text] / C. Croia, B. Serafini, M. Bombardieri [et al.]// Annals of the Rheumatic Diseases. – 2012.

Jason, L. A. Pediatric Myalgic Encephalomyelitis/Chronic Fatigue Syndrome [Text] / L. A. Jason, K. Barker, A. Brown // Rev Health Care. – 2012. – V. 1. – №3. – Р. 257-270.

Loebel, M. Deficient EBV-Specific B- and T-Cell Response in Patients with Chronic Fatigue Syndrome[Text] / M. Loebel, K. Strohschein, C. Giannini, U. Koelsch, S. Bauer [et al.] // PLoS ONE. – 2014. – V. 9. – № 1. – Р.853-887.

Glaser, R. Stressassociated changes in the steady-state expression of latent Epstein-Barr virus: implications for chronic fatigue syndrome and cancer [Text] / R. Glaser, D. A. Padgett, M. L. Litsky, R. A. Baiocchi, E. V. Yang // Brain Behav Immun. – 2005. – № 19. – Р.91–103.

Lerner, A. M. Subset-directed antiviral treatment of 142 herpesvirus patients with chronic fatigue syndrome [Text] / A. M. Lerner, S. H. Beqaj, J. T. Fitzgerald, K. Gill, C. Gill [et al.] // Virus Adaptation and Treatment. – 2010. – № 2. – Р.47–57.

Sairenji, T. Antibody responses to Epstein-Barr virus, human herpesvirus 6 and human herpesvirus 7 in patients with chronic fatigue syndrome [Text] / T. Sairenji, K. Yamanishi, Y. Tachibana, G. Bertoni, T. Kurata // Intervirology. – 1995. – № 38. – Р.269–273.

Kawai, K. Studies on the relationship between chronic fatigue syndrome and Epstein-Barr virus in Japan [Text] / K. Kawai, A. Kawai // Intern Med. – 1992. – № 31. – Р.313–318.

Ariza, M. E. Epstein-Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells [Text] / M. E. Ariza, P. Rivailler, R. Glaser, M. Chen, M. V. Williams // PLoS ONE. – 2013. – V. 8. – № 7. – Р.698-727.

Lerner, A. M. Antibody to Epstein-Barr Virus Deoxyuridine Triphosphate Nucleotidohydrolase and Deoxyribonucleotide Polymerase in a Chronic Fatigue Syndrome Subset [Text] / A. M. Lerner, M. E. Ariza, M. Williams, L. Jason, S. Beqaj // PLoS ONE. – 2012. – V. 7. – № 11. – Р.478-491.

Kogelnik, A. M. Use of valganciclovir in patients with elevated antibody titers against Human Herpesvirus-6 (HHV-6) and Epstein-Barr Virus (EBV) who were experiencing central nervous system dysfunction including long-standing fatigue [Text] / A. M. Kogelnik, K. Loomis, M. Hoegh-Petersen, F. Rosso, C. Hischier [et al.] // J Clin Virol. – 2006. – V. 37. – № 1. – Р. 33–38

Downloads

How to Cite

Volyanskiy, A., Kolotova, T., Romanova, E., Sidorenko, T., Igumnova, N., Konoreva, E., Yukhimenko, V., Kabluchko, T., & Pogorila, M. (2020). The molecular mechanisms of Epstein-Barr virus persistence in the human organism. Annals of Mechnikov’s Institute, (4), 17–26. Retrieved from https://journals.uran.ua/ami/article/view/208172

Issue

Section

Reviews