Nutraceutical components of blueberries for the prevention and treatment of diabetic retinopathy

Authors

  • Serhii Oliinyk Nobel Pharma Schweiz AG, Ukraine
  • Vasyl Humeniuk Doctor of pedagogical sciences, associate professor, Department of disaster medicine and military medicine of Danylo Halytsky Lviv National Medical University, Ukraine
  • Petro Oliinyk Doctor of pharmaceutical sciences, professor, Department of disaster medicine and military medicine of Danylo Halytsky Lviv National Medical University, Ukraine
  • Anna Rybachuk St. Nicholas hospital, Studinskogo st, 12/55, Lviv, Ukraine, Ukraine

DOI:

https://doi.org/10.5281/zenodo.10838691

Keywords:

diabetic retinopathy, oxidative stress, macular edema, blueberry anthocyanins.

Abstract

Diabetic retinopathy, as a severe complication of diabetes, is the main cause of vision loss. Currently, there is no definitive treatment for diabetic retinopathy that would prevent the progression or reversal of vision loss caused by photoreceptor degeneration and retinal ganglion cell death. For the treatment of diabetic retinopathy non-pharmacological intervention methods are used – laser photocoagulation and vitrectomy, but only in the late stages of the disease, therefore the search and research of new drugs, especially of plant origin, for the prevention and treatment of diabetic retinopathy in the early stages of its development are relevant. Anthocyanins – flavonoid compounds obtained from food plants show excellent pharmacological properties due to the simultaneous effect on numerous metabolic pathways and can act as an alternative to other treatment methods and prevent the further development of the disease. This review summarizes the results of research on blueberry anthocyanins, which demonstrate antioxidant, anti-inflammatory, anti-hyperlipidemic, anti-apoptotic activity and other pharmacological properties due to the simultaneous effect on numerous metabolic pathways and can act as an alternative to other treatment methods and prevent the further development of diabetic retinopathy. Blueberry anthocyanins have the potential to prevent the progression of diabetic retinopathy and may be considered as candidates for clinical trials for drugs development. However, further human studies using both blueberry extracts and individual anthocyanins are needed.

Keywords: diabetic retinopathy, oxidative stress, macular edema, blueberry anthocyanins.

References

Matos AL., Bruno DF., Ambrósio AF., Santos PF. The Benefits of Flavonoids in Diabetic Retinopathy // Nutrients. 2020.Vol.12(10). 3169. DOI:10.3390/nu12103169.

Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S. et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. // Diabetes Res Clin Pract. 2019. Vol.157,107843. DOI: 10.1016/j.diabres.2019.107843.

Semeraro F., Morescalchi F., Cancarini A., Russo A., Rezzola S., Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. // Diabetes Metab. 2019. Vol. 45(6). P. 517-527. DOI:10.1016/j.diabet.2019.04.002.

Alghamdi AH., Ahmed AAE., Bashir M., Abdalgadir H., Khalid A., Gul S. The use of medicinal plants in common ophthalmic disorders: A systematic review with meta-analysis. // Heliyon. 2023. Vol.9(4).e15340. DOI:10.1016/j.heliyon.2023.e15340.

Efferth T., Koch E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy.// Current Drug Targets, 2011. Vol.12(1). P.122-132. DOI: 10.2174/138945011793591626

Parveen A., Jin M., Kim S. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. // Phytomedicine, 2018. Vol.39. P.146-159. DOI: https://doi.org/10.1016/j.phymed.2017.12.018

Behl T., Kumar K., Singh S., Sehgal A., Sachdeva M., Bhatia S. et al. Unveiling the role of polyphenols in diabetic retinopathy. // Journal of Functional Foods. 2021. 85. 104608. DOI: https://doi.org/10.1016/j.jff.2021.104608.

Bonesi M., Leporini M., Tenuta MC., Tundis R. The Role of Anthocyanins in Drug Discovery: Recent Developments. // Curr Drug Discov Technol. 2020.1 Vol.7(3). P.286-298. DOI:10.2174/1570163816666190125152931.

Chu WK., Cheung SCM., Lau RAW., Benzie IFF. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Chapter 4. Bilberry (Vaccinium myrtillus L.) // CRC Press/Taylor & Francis. 2011. Available at: https://www.ncbi.nlm.nih.gov/books/NBK92770. Date accessed: Dec. 2023.

Akpoveso OP., Ubah EE., Obasanmi G. Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. // Antioxidants (Basel). 2023. Vol.12(1). 123. DOI: 10.3390/antiox12010123.

Mazza G., Miniati E. Anthocyanins in Fruits, Vegetables, and Grains. // Boca Raton.CRC press. 2018. 384 р. DOI: https://doi.org/10.1201/9781351069700

Jackman RL., Yada RY., Tung MA., Speers RA. Anthocyanins as food colorants — a review. // J. Food Biochem. 1987. Vol.11. P. 201–247. DOI: 10.1111/j.1745-4514.1987.tb00123.x

Salehi B., Sharifi-Rad J., Cappellini F., Reiner Ž., Zorzan D., Imran M. et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. // Front. Pharmacol. 2020. Vol. 11. 1300. DOI: 10.3389/fphar.2020.01300

Martău GA., Bernadette-Emőke T., Odocheanu R., Soporan DA., Bochiș M., Simon E. et al. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. // Molecules 2023. Vol. 28(4). 1533. DOI: https://doi.org/10.3390/molecules28041533

Andersen ОM., Jordheim M. Anthocyanins in health and disease - basic anthocyanin chemistry and dietary sources. In Anthocyanins in Health and Disease - Basic Anthocyanin Chemistry and Dietary Sources // CRC Press: 2013; pp. 30–107. Available at: https://www.researchgate.net/publication/ 260048373_Basic_Anthocyanin_ Chemistry_and_Dietary_Source_In_Anthocyanins_in_Health_and_Disease Date accessed: Dec. 2023.

Kuzmak IP. Anthocyanins and anthocyanidins as components of functional nutrition: biochemistry and effects on human health (Literature review). // Medical and Clinical Chemistry, 2022, Vol. 23(4). P. 111-124. DOI: 10.11603/mcch.2410-681X.2021.i4.12746 (Ukrainian)

Khoo HE., Azlan A., Tang ST., Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. // Food Nutr Res. 2017. Vol. 61(1).1361779. DOI:10.1080/16546628.2017.1361779.

Castañeda-Ovando A., de Lourdes Pacheco-Hernández M., Páez-Hernández E., Rodríguez JA., Galán-Vidal CA. Chemical studies of anthocyanins: a review. // Food Chem. 2009. Vol. 113(4). P.859–871. DOI:10.1016/j.foodchem.2008.09.001

Bueno JM., Ramos-Escudero F., Jiménez AM., Fett R., Asuero AG. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. // Critical Reviews in Analytical Chemistry. 2012. Vol. 42(2). P.126-151. DOI:10.1080/10408347.2011.632314

Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Jęcek M, Nowak P. et al. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. // Nutrients. 2023. Vol. 15(13).3016. DOI: 10.3390/nu15133016.

Houghton A., Appelhagen I., Martin C. Natural Blues: Structure Meets Function in Anthocyanins. // Plants, 2021. Vol. 10(4).726. DOI: 10.3390/plants10040726

Oliveirа H., Correia P., Pereira AR., Araújo P., Mateus N., de Freitas V. et al. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. // Int. J. Mol. Sci. 2020. Vol. 21(20). 7464. DOI: 10.3390/ijms21207464

Sogo T., Kumamoto T., Ishida H., Hisanaga A., Sakao K., Terahara N. et al. Comparison of the Inhibitory Effects of Delphinidin and Its Glycosides on Cell Transformation. // Planta Med. 2014. Vol. 81. P. 26–31. DOI: 10.1055/s-0034-1383311

Czank C., Cassidy A., Zhang Q., Morrison DJ., Preston T., Kroon P A. et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. // Am. J. Clin. Nutr. 2013. Vol. 97. P. 995–1003. DOI: 10.3945/ajcn.112.049247

Liu Y., Liu Y., Tao C., Liu M., Pan Y., Zhaolin L. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. // J. Food Meas. Charact. 2018. Vol. 12. P.1744–1753. DOI:10.1007/s11694-018-9789-1

Chen CC., Lin C., Chen MH., Chiang PY. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. // Foods. 2019. Vol. 8(9). 393. DOI:10.3390/foods8090393.

Brouillard R., Lang J. The hemiacetal-cis-chalcone equilibrium of malvidin, a natural anthocyanin. // Can. J. Chem. 1990. Vol. 68. P. 755–761. DOI: 10.1139/v90-119.

Wang Y., Zhang D., Liu Y., Wang D., Liu J., Ji B. The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. // J. Sci. Food Agric. 2015. Vol. 95.P. 936–944. DOI:10.1002/jsfa.6765.

Miyake S., Takahashi N., Sasaki M., Kobayashi S., Tsubota K., Ozawa Y. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: Cellular and molecular mechanism. // Lab. Investig. 2012. Vol. 92. P.102–109. DOI: 10.1038/labinvest.2011.132.

Ogawa K., Hara H. The Involvement of Anthocyanin-Rich Foods in Retinal Damage. In: Recent Advances in Polyphenol Research. // Wiley-Blackwell. 2016. P. 193-205. DOI: 10.1002/9781118883303.ch9

Belleoud L., Leluan D., Boyer Y. Study on the effects of anthocyanin glycosides on the nocturnal vision of air traffic controllers. // Rev. Med. Aeronaut Spat. 1966. Vol. 18. P. 3–7.

Nomi Y., Iwasaki-Kurashige K., Matsumoto H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. // Molecules. 2019. Vol. 24. 3311. DOI: 10.3390/molecules24183311.

Kalt W., Blumberg JB., McDonald JE., Vinqvist-Tymchuk MR., Fillmore SA., Graf BA. et al. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. // J. Agric. Food Chem. 2008. Vol. 56. P. 705–712. DOI: 10.1021/jf071998l.

Saha S., Ganguly S., Sikdar D. A Review on Anthocyanin Pigments with respect toits Nutraceutical Properties. // International Journal for Modern Trends in Science and Technology. 2020. Vol. 6(12). P. 54-60. DOI: 10.46501/IJMTST061211

Nunes AR., Costa EC., Alves G., Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. // Pharmaceuticals. 2023. Vol. 16(5)/ 736. DOI: 10.3390/ph16050736

Mattioli R., Francioso A., Mosca L., Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. // Molecules 2020. Vol. 25(17). 3809 DOI: 10.3390/molecules25173809

Wu X., Beecher GR., Holden JM., Haytowitz DB., Gebhardt SE., Prior RL. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. // J Agric Food Chem. 2006. Vol. 54(11). P. 4069-4075. DOI: 10.1021/jf060300l.

Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L. et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford). 2010. Vol. 2010.bap024. DOI: 10.1093/database/bap024.

Kelley DS., Adkins Y., Laugero KD. A Review of the Health Benefits of Cherries. // Nutrients. 2018. Vol. 10(3).368. DOI: 10.3390/nu10030368

Aliaño-González MJ., Ferreiro-González M., Espada-Bellido E., Carrera C., Palma M., Álvarez JA. et al. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. // Agronomy. 2020. Vol. 10(2). 183. DOI: 10.3390/agronomy10020183

Longo L., Vasapollo G., Rescio L. Identification of anthocyanins in Rhamnus alaternus L. berries. // J Agric Food Chem. 2005. Vol. 53(5). P.1723-1727. DOI: 10.1021/jf048253p.

Slimestad R., Fossen T., Vagen I. M. Onions: A Source of Unique Dietary Flavonoids. // J. Agric. Food Chem. 2007. Vol. 55. P.10067–10080 DOI: 10.1021/jf0712503

Kowalczyk E., Krzesiński P., Kura M., Szmigiel B., Błaszczyk J. Anthocyanins in medicine. // Pol J Pharmacol. 2003. Vol. 55(5). P.699-702.

Cravotto G., Boffa L., Genzini L., Garella D. Phytotherapeutics: an evaluation of the potential of 1000 plants. // J Clin Pharm Ther. 2010. Vol. 35(1). P.11-48. DOI: 10.1111/j.1365-2710.2009.01096.x.

Burdulis D., Sarkinas A., Jasutiené I., Stackevicené E., Nikolajevas L., Janulis V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. // Acta Pol Pharm. 2009. Vol. 66(4). P. 399-408.

Müller D., Schantz M., Richling E. High Performance Liquid Chromatography Analysis of Anthocyanins in Bilberries (Vaccinium myrtillus L.), Blueberries (Vaccinium corymbosum L.), and Corresponding Juices. // Food Science. 2012. Vol. 77(4).P. 340-345. DOI: 10.1111/j.1750-3841.2011.02605.x

Paes J., Dotta R., Barbero GF., Martínez J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. // The Journal of Supercritical Fluids. 2014. Vol. 95. P.8-16. DOI: 10.1016/j.supflu.2014.07.025.

Petruskevicius A., Viskelis J., Urbonaviciene D., Viskelis P. Anthocyanin Accumulation in Berry Fruits and Their Antimicrobial and Antiviral Properties: An Overview. // Horticulturae 2023. Vol. 9(2).288. DOI: 10.3390/horticulturae9020288

Assessment Report on Vaccinium myrtillus L. // European Medicines Agency. Committee on Herbal Medicinal Products. 2015. 555161. P.1–83. Available at: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-vaccinium-myrtillus-l-fructus-recens_en.pdf Date accessed: Dec. 2023.

Kähkönen MP., Heinämäki J., Ollilainen V., Heinonen M. Berry Anthocyanins: Isolation, Identification and Antioxidant Activities: Berry Anthocyanins. // J. Sci. Food Agric. 2003. Vol. 83. P. 1403–1411. DOI: 10.1002/jsfa.1511

Chehri A., Yarani R., Yousefi Z., Shakouri SK., Ostadrahimi A., Mobasseri M. et al. Phytochemical and pharmacological anti-diabetic properties of bilberries (Vaccinium myrtillus), recommendations for future studies. // Prim Care Diabetes. 2022. Vol. 16(1). P. 27-33. DOI: 10.1016/j.pcd.2021.12.017.

Wang W., Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. // Int J Mol Sci. 2018. Vol. 19(6). 1816. DOI: 10.3390/ijms19061816.

Romero-Aroca P., Baget-Bernaldiz M., Pareja-Rios A., Lopez-Galvez M., Navarro-Gil R., Verges R. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. // J Diabetes Res. 2016. Vol. 2016. 2156273. DOI: 10.1155/2016/2156273.

Kropp M., Golubnitschaja O., Mazurakova A., Koklesova L., Sargheini N., Vo TKS. et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. // EPMA J. 2023. Vol. 14(1). P.21-42. DOI: 10.1007/s13167-023-00314-8.

Madeira MH., Boia R., Santos PF., Ambrósio AF., Santiago A.R. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. // Mediat. Inflamm. 2015. Vol. 2015. P.1–15. DOI: 10.1155/2015/673090.

Tang J., Kern T.S. Inflammation in diabetic retinopathy. Prog. // Retin. Eye Res. 2011. Vol. 30. P. 343–358. DOI: 10.1016/j.preteyeres.2011.05.002.

Barber AJ., Gardner TW., Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. // Investig. Ophthalmol. Vis. Sci. 2011. Vol. 52. P. 1156–1163. DOI: 10.1167/iovs.10-6293.

Van Dijk HW., Verbraak FD., Kok PHB., Stehouwer M., Garvin MK., Sonka M. et al. Early neurodegeneration in the retina of type 2 diabetic patients. // Investig. Ophthalmol. Vis. Sci. 2012. Vol. 53. P. 2715–2719. DOI: 10.1167/iovs.11-8997.

Lally DR., Shah CP., Heier JS. Vascular endothelial growth factor and diabetic macular edema. // Surv Ophthalmol. 2016. Vol. 61(6). P. 759-768. DOI: 10.1016/j.survophthal.2016.03.010.

Ebneter A., Zinkernagel MS. Novelties in Diabetic Retinopathy. // Endocr Dev. 2016. Vol. 31. P. 84-96. DOI: 10.1159/000439391.

AlQahtani AS., Hazzazi MA., Waheeb SA., Semidey VA., Elgendy HK., Alkhars WI. et al. Saudi Arabia Guidelines for diabetic macular edema: A consensus of the Saudi Retina Group. // Saudi Med J. 2021. Vol. 42(2). P.131-145. DOI: 10.15537/smj.2021.2.25623.

Rossino MG., Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. // Nutrients. 2019. Vol. 11(4). 771. DOI: 10.3390/nu11040771

Patel C., Pande S., Sagathia V., Ranch K., Beladiya J., Boddu SHS. et al. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. // Pharmaceutics. 2023. Vol. 15(3). 837. DOI: 10.3390/pharmaceutics15030837.

Nabavi SF., Habtemariam S., Daglia M., Shafighi N., Barber AJ., Nabavi SM. Anthocyanins as a potential therapy for diabetic retinopathy. // Curr Med Chem. 2015. Vol. 22(1). P. 51-58. DOI: 10.2174/0929867321666140815123852.

Ola MS., Al-Dosari D., Alhomida AS. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids. // Curr Pharm Des. 2018. Vol. 24(19). P. 2180-2187. DOI: 10.2174/1381612824666180515151043.

Liu J., Zhou H., Song L., Yang Z., Qiu M., Wang J. et al. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. // Molecules. 2021. Vol. 26(13). 3807. DOI: 10.3390/molecules26133807.

Wang Y., Zhao L., Lu F., Yang X., Deng QC., Ji BP. et al. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-Inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. // Molecules. 2015. Vol. 20. P. 22395-22410. DOI: 10.3390/molecules201219785

Huang WY., Yan Z., Li DJ., Ma YH., Zhou JZ., Sui ZQ. Antioxidant and anti-Inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. // Oxid. Med. Cell. Longev. 2018. Vol. 2018. 1862418. DOI: 10.1155/2018/1862462

Putta S., Yarla NS., Kumar KE., Lakkappa DB., Kamal MA., Scotti L. et al. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications. // Curr Med Chem. 2018. Vol. 25(39). P. 5347-5371. DOI: 10.2174/0929867325666171206101945.

Milbury PE., Graf B., Curran-Celentano JM., Blumberg JB. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. // Invest Ophthalmol Vis Sci. 2007. Vol. 48(5). P. 2343-2349. DOI: 10.1167/iovs.06-0452.

Kim J., Kim CS., Lee YM., Sohn E., Jo K., Kim JS. Vaccinium myrtillus extract prevents or delays the onset ofdiabetes--induced blood-retinal barrier breakdown. // Int. J.Food Sci. Nutr. 2015.66(2).P. 236-242. DOI: 10.3109/09637486.2014.979319

Trotta MC., Pieretti G., Petrillo F., Alessio N., Hermenean A., Maisto R. et al. Resolvin D1 reduces mitochondrial damage to photoreceptors of primary retinal cells exposed to high glucose. // J Cell Physiol. 2020. Vol. 235(5). P.4256-4267. DOI: 10.1002/jcp.29303

Visnes T., Cazares-Korner A., Hao W., Wallner O., Masuyer G., Loseva O. et al. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. // Science. 2018. Vol. 362(6416). P. 834-839. DOI: 10.1126/science.aar8048.

Dong Q., Wang Q., Yan X., Wang X., Li Z., Zhang L. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-kappaB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis. // Open Med (Wars), 2021. Vol. 16(1). P.1336-1349. DOI: 10.1515/med-2021-0328

Aqil F., Jeyabalan J., Munagala R., Singh IP., Gupta RC. Prevention of hormonal breast cancer by dietary jamun. // Mol Nutr Food Res. 2016. Vol. 60(6). P. 1470-1481. DOI: 10.1002/mnfr.201600013

Wang C., Wang K., Li P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis. // J Pharmacol Sci. 2022. Vol. 150(1). P. 31-40. DOI: 10.1016/j.jphs.2022.06.004.

Chen S., Zhou H., Zhang G., Meng J., Deng K. Zhou W. et al. Anthocyanins from Lycium ruthenicum Murr. Ameliorated d-Galactose-Induced Memory Impairment, Oxidative Stress, and Neuroinflammation in Adult Rats. // J. Agric. Food Chem. 2019. Vol. 67. P.3140–3149. DOI: 10.1021/acs.jafc.8b06402

Paik SS., Jeong E., Jung SW., Ha TJ., Kang S., Sim S. et al. Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. // Exp. Eye Res. 2012. Vol. 97. P. 55–62. DOI: 10.1016/j.exer.2012.02.010

He F., Ru X., Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. // Int J Mol Sci. 2020. Vol. 21(13). 4777. DOI: 10.3390/ijms21134777.

Shih PH., Yeh CT., Yen GC. Anthocyanins Induce the Activation of Phase II Enzymes through the Antioxidant Response Element Pathway against Oxidative Stress-Induced Apoptosis. // J. Agric. Food Chem. 2007. Vol. 55. P. 9427–9435. DOI: 10.1021/jf071933i

Zhang B., Buya M., Qin W., Sun C., Cai H., Xie Q. et al. Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in beta cells and negatively regulate oxidative stress-induced autophagy. // J. Agric. Food Chem. 2013. Vol. 61. P. 8765–8772. DOI: 10.1021/jf4012399

Li R., Ye Z., Yang W., Xu YJ., Tan CP., Liu Y. Blueberry Anthocyanins from Commercial Products: Structure Identification and Potential for Diabetic Retinopathy Amelioration. // Molecules. 2022. Vol. 27(21). 7475. DOI: 10.3390/molecules27217475

Herrera-Balandrano DD., Chai Z., Beta T., Feng J., Huang W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability/ // Trends in Food Science & Technology, 2021. Vol. 118(В). P. 808-821. DOI: 10.1016/j.tifs.2021.11.006.

Chi J., Ge J., Yue X., Liang J., Sun Y., Gao X., Yue P. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. // LWT. 2019. Vol. 109. P.101-107. DOI:10.1016/j.lwt.2019.03.070.

Duan Y., Tarafdar A., Chaurasia D., Singh A., Bhargava PC., Yang J. et al. Blueberry fruit valorization and valuable constituents: A review. // International Journal of Food Microbiology. 2022. Vol. 381. 109890. DOI: 10.1016/j.ijfoodmicro.2022. 109890

Huang W., Yan Z., Li D., Ma Y., Zhou J., Sui Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. // Oxidative Medicine and Cellular Long. 2018. Vol. 2018(2). P. 1-10. DOI: 10.1155/2018/1862462

Downloads

Published

2024-03-20

How to Cite

Oliinyk, S. ., Humeniuk, V. ., Oliinyk, P. ., & Rybachuk, A. . (2024). Nutraceutical components of blueberries for the prevention and treatment of diabetic retinopathy. Annals of Mechnikov’s Institute, (1), 3–12. https://doi.org/10.5281/zenodo.10838691

Issue

Section

Reviews