Carbapenem resistance shapes the population structure of Klebsiella pneumonia
DOI:
https://doi.org/10.5281/zenodo.15011907Keywords:
Klebsiella pneumoniae; antimicrobial resistance; genomics; population structureAbstract
Klebsiella pneumoniae (Kp) is an ubiquitous and highly versatile species from the family Enterobacteriaceae. Remarkable genetic and phenotypic plasticity determines its success in adapting to a wide range of environmental and host-associated niches (e.g., fresh and salt waterwater, soil, plants, insects, birds, and animals, including humans, where it usually persists as a gut commensal, but also can colonize other mucosal surfaces and skin). Certain lineages can cause severe invasive community-acquired (CA) infections, but the majority behave as a typical opportunistic pathogen, persistingasymptomatically till the moment of the host vulnerability. One of the most concerning aspects of Kp's recent evolution is its adaptation to the environment of healthcare facilities. The species is one of the major nosocomial pathogens, and the most frequent cause of neonatal sepsis worldwide. Distinguishing clinical feature of Kp infections is propensity for the development of bacteremia and metastatic spread to unusual and often multiple locations (e.g., hepatic, and non-hepatic abscesses, meningitis, endophthalmitis, necrotizing fasciitis, etc.). Despite such a prominent clinical relevance per se, Kp has been recognized as a global healthcare threat primarily due to its contribution to the current crisis of carbapenem resistance (CR). Certain epidemiologically successful lineages turned out to be incredibly effective in the accumulation, maintenance, and spread of resistance-associated mobile genetic elements (rMGEs) among other clinically relevant Gram-negative organisms. The aggregation of numerous resistance genes (including those, encoding ESBL's and/or carbapenemases) within a specific Kp genetic background has led to the emergence of global hospital outbreak CRKp clones, followed by multispecies outbreaks of difficult-to-treat CR healthcare associated infections (HAI) worldwide. Recent surveillance efforts and molecular epidemiology studies demonstrate a complex population structure of Kp, characterized by hundreds of deeply branching phylogenetic lineages. These lineages exhibit significant differences in the distribution of genes conferring antibiotic resistance and virulence, as well as variable transmissibility within the hospital environment. This review focuses on understanding the evolution of clinically relevant genetic variants of CRKp, which is crucial for the development of effective control strategies.
References
World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. World Health Organisation; 2017.
David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-1929. doi:10.1038/s41564-019-0492-8
European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2023. Stockholm: ECDC; 2024.
Fuchs F, Xanthopoulou K, Burgwinkel T, et al. Coexistence of seven different carbapenemase producers in a single hospital admission screening confirmed by whole-genome sequencing. J Glob Antimicrob Resist. Published online October 15, 2024. doi:10.1016/j.jgar.2024.09.005
Cabello M, Hernández-García M, Maruri-Aransolo A, et al. Occurrence of multi-carbapenemase-producing Enterobacterales in a tertiary hospital in Madrid (Spain): A new epidemiologic scenario. J Glob Antimicrob Resist. 2024;38:281-291. doi:10.1016/j.jgar.2024.06.012
Hernández-García M, González de Aledo M, Ponce-Alonso M, et al. Simultaneous clonal spread of NDM-1-producing Pseudomonas aeruginosa ST773 from Ukrainian patients in the Netherlands and Spain. IJID Reg. 2024;12:100415. Published 2024 Jul 30. doi:10.1016/j.ijregi.2024.100415
Schultze T, Hogardt M, Velázquez ES, et al. Molecular surveillance of multidrug-resistant Gram-negative bacteria in Ukrainian patients, Germany, March to June 2022. Euro Surveill. 2023;28(1):2200850. doi:10.2807/1560-7917.ES.2023.28.1.2200850
Ljungquist O, Magda M, Giske CG, et al. Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. J Infect. Published online October 11, 2024. doi:10.1016/j.jinf.2024.106312.
Wyres KL, Wick RR, Judd LM, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15(4):e1008114. Published 2019 Apr 15. doi:10.1371/journal.pgen.1008114
Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344-359. doi:10.1038/s41579-019-0315-1
Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One. 2009;4(3):e4982. doi:10.1371/journal.pone.0004982.
Hennart M, Guglielmini J, Bridel S, et al. A Dual Barcoding Approach to Bacterial Strain Nomenclature: Genomic Taxonomy of Klebsiella pneumoniae Strains. Mol Biol Evol. 2022;39(7):msac135. doi:10.1093/molbev/msac135
Wyres KL, Gorrie C, Edwards DJ, et al. Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258. Genome Biol Evol. 2015;7(5):1267-1279. Published 2015 Apr 10. doi:10.1093/gbe/evv062
Biedrzycka M, Izdebski R, Urbanowicz P et al. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother. 2023;78(4):1132-1134. doi:10.1093/jac/dkad028
European Centre for Disease Prevention and Control. Emergence of hypervirulent Klebsiella pneumoniae ST23 carrying carbapenemase genes in EU/EEA countries. 17 March 2021. ECDC: Stockholm; 2021.
Lam MMC, Holt KE, Wyres KL. Comment on: MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother. 2023;78(4):1132-1134. doi:10.1093/jac/dkad028
Lam MMC, Wyres KL, Duchêne S, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018;9(1):2703. Published 2018 Jul 13. doi:10.1038/s41467-018-05114-7
Bowers JR, Kitchel B, Driebe EM, et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS One. 2015;10(7):e0133727. Published 2015 Jul 21. doi:10.1371/journal.pone.0133727
Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37-46. doi:10.1016/S1473-3099(17)30489-9
Zhou K, Xue CX, Xu T, et al. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun. 2023;14(1):2464. Published 2023 Apr 28. doi:10.1038/s41467-023-38061-z
Ford PJ, Avison MB. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J Antimicrob Chemother. 2004;54(1):69-75. doi:10.1093/jac/dkh251
Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international hi Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565-591. doi:10.1128/CMR.00116-14
Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol. 2018;45:131-139. doi:10.1016/j.mib.2018.04.004
Naas, T., Oueslati, S., Bonnin, R. A., et al. Beta-Lactamase DataBase (BLDB) – Structure and Function. J. Enzyme Inhib. Med. Chem. 2017, 32, 917-919.
Tooke CL, Hinchliffe P, Bragginton EC, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019;431(18):3472-3500. doi:10.1016/j.jmb.2019.04.002
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021;296:100155. doi:10.1074/jbc.RA120.01505
Hobson CA, Pierrat G, Tenaillon O, et al. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother. 2022;66(9):e0044722. doi:10.1128/aac.00447-22
Bradford PA, Bratu S, Urban C, Visalli M, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis. 2004 Jul 1;39(1):55-60. doi: 10.1086/421495. Epub 2004 Jun 14. PMID: 15206053.
Kitchel B, Rasheed JK, Patel JB, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother. 2009;53(8):3365-3370. doi:10.1128/AAC.00126-09
Navon-Venezia S, Leavitt A, Schwaber MJ, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother. 2009;53(2):818-820. doi:10.1128/AAC.00987-08
Deleo FR, Chen L, Porcella SF, et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A. 2014;111(13):4988-4993. doi:10.1073/pnas.1321364111
Chen L, Mathema B, Pitout JD, DeLeo FR, Kreiswirth BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio. 2014;5(3):e01355-14. Published 2014 Jun 24. doi:10.1128/mBio.01355-14
Grundmann H, Livermore DM, Giske CG et al. Carbapenem-non- susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro surveillance 2010; 15: pii¼19711.
WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022 – 2020 data. Copenhagen: WHO Regional Office for Europe; 2022
Stoesser N, Phan HTT, Seale AC, et al. Genomic Epidemiology of Complex, Multispecies, Plasmid-Borne blaKPCCarbapenemase in Enterobacterales in the United Kingdom from 2009 to 2014. Antimicrob Agents Chemother. 2020;64(5):e02244-19. Published 2020 Apr 21. doi:10.1128/AAC.02244-19
Decraene V, Phan HTT, George R, et al. A Large, Refractory Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-Producing Escherichia coli Demonstrates Carbapenemase Gene Outbreaks Involving Sink Sites Require Novel Approaches to Infection Control. Antimicrob Agents Chemother. 2018;62(12):e01689-18. Published 2018 Nov 26. doi:10.1128/AAC.01689-18
Stoesser N, George R, Aiken Z, et al. Genomic epidemiology and longitudinal sampling of ward wastewater environments and patients reveals complexity of the transmission dynamics of blaKPC-carbapenemase-producing Enterobacterales in a hospital setting. JAC Antimicrob Resist. 2024;6(5):dlae140. Published 2024 Sep 3. doi:10.1093/jacamr/dlae140
Rodrigues C, Desai S, Passet V, Gajjar D, Brisse S. Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147. Microb Genom. 2022;8(1):000737. doi:10.1099/mgen.0.000737
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annals of Mechnikov's Institute

This work is licensed under a Creative Commons Attribution 4.0 International License.