Nowaday current status of bacterial (staphylococcal) carriage and known approaches to overcome it
DOI:
https://doi.org/10.5281/zenodo.17922879Keywords:
nosocomial infections, staphylococcus, adhesion, biofilms, metabioticsAbstract
Currently, determining the current state of bacterial (staphylococcal) carriage, analyzing known approaches to overcoming it, determining a strategy for optimizing the latter and developing new directions for combating bacterial carriage is relevant. The purpose of this work is an informational and analytical review of modern literature on bacterial carriage, including staphylococcal, and methods for combating it. The importance of the human microbiota for its health, the effectiveness of the use of probiotics, prebiotics, synbiotics, metabiotics in dysbiosis to restore the balance of microorganisms are considered. The significant danger of nosocomial infections for the health care system around the world is shown, as well as the particular severity of the course of hospital-acquired infections, which is inherent in weakened people in conditions of armed conflict. It is noted that in emergency situations there is a need to adapt the country's standard medical care for hospital-acquired infections to modern conditions. The work demonstrates the special place, among nosocomial infections, of staphylococcal infection, in which the most common source of Staphylococcus aureus spread is practically healthy carriers.The importance of monitoring Staphylococcus aureus carriage among different population groups, especially among medical workers, is shown in order to further develop effective strategies for prevention and control of infections. Methods of combating staphylococcal carriage are considered, taking into account the possibility of suspending the initial stage of colonization of the macroorganism by suppressing bacterial adhesion and inhibiting the formation of biofilms of pathogens. The need to develop new approaches to increase the effectiveness of prevention and control of staphylococcal carriage is shown. The information obtained will form the basis for further expansion of current concepts of bacterial carriage, will contribute to the development of a new strategy for the eradication of staphylococci among certain categories of the population, such as medical and pharmaceutical workers, pregnant women, the wounded, etc., which will make it possible to prevent the spread of nosocomial infections of staphylococcal genesis in modern conditions and will contribute to the creation of complex immunobiological preparations of a new generation. The work shows the need to develop new approaches to increase the effectiveness of prevention and control of staphylococcal carriage. The possibility of reducing the persistence of the pathogen on mucous membranes due to blocking adhesive processes by its own surface antigens in combination with stimulation of the local immunity with metabiotics may become an alternative to modern methods of combating nosocomial infections and needs further study.
References
Piewngam P, et al. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe. 2024;5(6):e606–18. Available from: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(24)00040-5/fulltext
Piewngam P, Khongthong S, Roekngam N, Theapparat Y, Sunpaweravong S, Faroongsarng D, Otto M. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. Lancet Microbe. 2023;4(2):e75–83. doi: 10.1016/S2666-5247(22)00322-6. PMID: 36646104; PMCID: PMC9932624.
Westgeest AC, Hanssen JLJ, de Boer MGJ, Schippers EF, Lambregts MMC. Eradication of community-onset Methicillin-resistant Staphylococcus aureus carriage: a narrative review. Clin Microbiol Infect. 2025;31(2):173–81. doi: 10.1016/j.cmi.2024.01.003. PMID: 38215977.
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, et al. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol. 2024;14:1336821. doi: 10.3389/fcimb.2024.1336821. PMID: 38357445; PMCID: PMC10864608.
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics. 2023;12(8):1256. doi: 10.3390/antibiotics12081256.
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus. Microbiol Mol Biol Rev. 2023;87(2):e00037-22. doi: 10.1128/mmbr.00037-22. PMID: 37129495; PMCID: PMC10304793.
Chen X, Missiakas D. Novel antibody-based protection/therapeutics in Staphylococcus aureus. Annu Rev Microbiol. 2024;78(1):425-46. doi:10.1146/annurev-micro-041222-024605. PMID:39146354.
Fadieienko GD, Nikiforova YaV. Мікробіом людини: загальні дані та клінічне значення еубіозу травного каналу. Сучасна гастроентерологія. 2019;(5):65-74. doi:10.30978/MG-2019-5-65. Available from: http://sgastro.com.ua/article/view/184822
Isayenko O. Synergistic activity of filtrates Lactobacillus rhamnosus GG and Saccharomyces boulardii and antibacterial preparations against Corynebacterium. Regul Mech Biosyst. 2019;10(4):445-53. doi:10.15421/021966.
Isaienko O, Bilozerskyi V, Bomko T, Ryzhkova T, Danilova T. Вплив комбінацій поживних субстратів, що включають дезінтеграти Staphylococcus spp. з Escherichia coli, на фактори патогенності збудників. In: Mezhiievska I, Maslovskyi V, Pavlov S, editors. Medicine and psychology: modern problems, new technologies and ways of developing outdated theories. Boston: Primedia eLaunch; 2024. p. 316-27. doi:10.46299/ISG.2024.MONO.MED.1. Available from: https://isg-konf.com/medicine-and-psychology-modern-problems-new-technologies-and-ways-of-developing-outdated-theories/
Isayenko O, Kotsar O. Minimum inhibitory and bactericidal concentrations of antibacterial drugs separately and together with metabolic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii. In: Challenges of medical science and education: an experience of EU countries and practical introduction in Ukraine. Riga: Baltija Publishing; 2020. p. 157-74. doi:10.30525/978-9934-588-64-8-9.
Isaienko OYu, Bilozerskyi VI, Ryzhkova TM. Вивчення впливу експериментальних поживних субстратів, які містять комбінації дезінтегратів бактерій, на ознаки і фактори патогенності мікроорганізмів. In: Transformation of medical sciences and education in the digitalization era. Riga: Baltija Publishing; 2024. p. 261-77. doi:10.30525/978-9934-26-430-6-
Available from: http://baltijapublishing.lv/omp/index.php/bp/catalog/book/465
Isayenko O, Minukhin V, Minukhin D, et al. Antipseudomonal activity of metabolic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii against the polyresistent pathogen in in vitro and in vivo tests. Wiad Lek. 2022;75(10):2449-55. doi:10.36740/WLek202210125.14. Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon. 2023;9(10):e20561. doi:10.1016/j.heliyon.2023.e20561. Available from: https://www.sciencedirect.com/science/article/pii/S2405844023077691
Gedefie A, Ayele FY, Getaneh FB, et al. Magnitude of health care associated infections and its clinical predictors in Ethiopia: a systematic review and meta-analysis. J Epidemiol Glob Health. 2025;15:50. doi:10.1007/s44197-025-00397-8.
Sandu AM, Chifiriuc MC, Vrancianu CO, et al. Healthcare-associated infections: the role of microbial and environmental factors in infection control—a narrative review. Infect Dis Ther. 2025;14:933-71. doi:10.1007/s40121-025-01143-0.
Marou V, Vardavas CI, Aslanoglou K, Nikitara K, Plyta Z, Leonardi-Bee J, et al. The impact of conflict on infectious disease: a systematic literature review. Confl Health. 2024;18(1):27. doi:10.1186/s13031-023-00568-z. PMID: 38584269; PMCID: PMC11000310.
Topluoglu S, Taylan-Ozkan A, Alp E. Impact of wars and natural disasters on emerging and re-emerging infectious diseases. Front Public Health. 2023;11:1215929. doi:10.3389/fpubh.2023.1215929. Available from: https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2023.1215929
Chan H, Li F, Dokoshi T, Cavagnero KJ, Li Q, Chen Y, et al. Psychological stress increases skin infection through the action of TGFβ to suppress immune-acting fibroblasts. Sci Immunol. 2025;10(106):eads0519. doi:10.1126/sciimmunol.ads0519. PMID: 40215323; PMCID: PMC12183641.
Isayenko O, Kotsar O, Ryzhkova T. Sensitivity of plankton and biofilm forms of antibiotic-resistant bacteria to metabolic complexes of lactobacteria and sacharomicets. In: Scientific basis of modern medicine. Boston (MA): Primedia eLaunch; 2020. p. 98–104. Available from: https://isg-konf.com/wp-content/uploads/2020/05/Project-ISG-2020-MONO-MED-I.pdf
Isayenko O, Knysh O, Kotsar O, et al. Evaluation of anti-microbial activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii against antibiotic-resistant gram-negative bacteria. Regul Mech Biosyst. 2019;10(2):245–50. doi:10.15421/021937.
Bae S, Kim ES, Kim HS, Yang E, Chung H, Lee YW, et al. Risk factors of recurrent infection in patients with Staphylococcus aureus bacteremia: a competing risk analysis. Antimicrob Agents Chemother. 2022;66(7):e0012622. doi:10.1128/aac.00126-22. PMID: 35762799; PMCID: PMC9295554.
Cane F, Posfay-Barbe KM, Pittet LF. Hygiene measures and decolonization of Staphylococcus aureus made simple for the pediatric practitioner. Pediatr Infect Dis J. 2024;43(5):e178–82. doi:10.1097/INF.0000000000004294.
Snow TAC, Singer M, Arulkumaran N. Antibiotic-induced immunosuppression—a focus on cellular immunity. Antibiotics (Basel). 2024;13(11):1034. doi:10.3390/antibiotics13111034.
Li S, Liu J, Zhang X, Gu Q, Wu Y, Tao X, et al. The potential impact of antibiotic exposure on the microbiome and human health. Microorganisms. 2025;13(3):602. doi:10.3390/microorganisms13030602. PMID: 40142495; PMCID: PMC11944296.
Chmielowiec-Korzeniowska A, Tymczyna L, Wlazło Ł, Nowakowicz-Dębek B, Trawińska B. Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatol Alergol. 2020;37(2):184–9. doi:10.5114/ada.2020.94837. PMID: 32489352; PMCID: PMC7262795.
Cella E, Sutcliffe CG, Tso C, Paul E, Ritchie N, Colelay J, et al. Carriage prevalence and genomic epidemiology of Staphylococcus aureus among Native American children and adults in the Southwestern USA. Microb Genom. 2022;8(5):mgen000806. doi:10.1099/mgen.0.000806. PMID: 35551692; PMCID: PMC9465076.
Rai JR, Amatya R, Rai SK. Hand and nasal carriage of Staphylococcus aureus and its rate of recolonization among healthcare workers of a tertiary care hospital in Nepal. JAC Antimicrob Resist. 2022;4(3):dlac051. doi:10.1093/jacamr/dlac051. PMID: 35668910; PMCID: PMC9160876.29.
Olsen K, Sangvik M, Simonsen GS, Sollid JU, Sundsfjord A, Thune I, et al. Prevalence and population structure of Staphylococcus aureus nasal carriage in healthcare workers in a general population: the Tromsø Staph and Skin Study. Epidemiol Infect. 2013;141(1):143–52. doi:10.1017/S0950268812000465. PMID: 22440487; PMCID: PMC3518280.
Almutairi H, Albahadel H, Alhifany AA, Aldalbahi H, Alnezary FS, et al. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) at a maternity and children hospital in Saudi Arabia: a cross-sectional study. Saudi Pharm J. 2024;32(4):102001. doi:10.1016/j.jsps.2024.102001.
Boncompain CA, Suárez CA, Morbidoni HR. Staphylococcus aureus nasal carriage in health care workers: first report from a major public hospital in Argentina. Rev Argent Microbiol. 2017;49(2):125–31. doi:10.1016/j.ram.2017.01.003.
Karathanasi G, Bojer MS, Baldry M, Johannessen BA, Wolff S, Greco I, et al. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep. 2018;8:3562. doi:10.1038/s41598-018-21951-4.
Iglesias MB, Viñas I, Colás-Medà P, Collazo C, Serrano JCE. Adhesion and invasion of Listeria monocytogenes and interaction with Lactobacillus rhamnosus GG after habituation on fresh-cut pear. J Funct Foods. 2017;34:453–60. doi:10.1016/j.jff.2017.05.011.
Nantavisai K, Puttikamonkul S, Chotelersak K, Taweechotipatr M. In vitro adhesion property and competition against enteropathogens of Lactobacillus strains isolated from Thai infants. Songklanakarin J Sci Technol. 2018;40(1):69–74. doi:10.14456/sjst-psu.2018.14.
Zeraik AE, Nitschke M. Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol. 2010;61(6):554–9. doi:10.1007/s00284-010-9642-3.
Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2012;56(12):6366–71. doi:10.1128/AAC.01180-12.
Dunne C, Kelly P, O’Halloran S, Soden D, Bennett M, von Wright A, et al. Mechanisms of adherence of a probiotic Lactobacillus strain during and after in vivo assessment in ulcerative colitis patients. Microb Ecol Health Dis. 2004;16:96–104. doi:10.1080/08910600410032299.
Nitschke M, Araujo LV, Costa SG, Pires RC, Zeraik AE, Fernandes AC, et al. Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett Appl Microbiol. 2009;49(2):241–7. doi:10.1111/j.1472-765X.2009.02642.x.
Kalyani R, Bishwambhar M, Suneetha V. Recent potential usage of surfactant from microbial origin in pharmaceutical and biomedical arena: a perspective. Int Res J Pharm. 2011;2(8):11–5. Available from: https://www.irjponline.com/Admin/php/uploads/1070_pdf.pdf
Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72(4):728–64. doi:10.1128/MMBR.00017-08.
He X, Zeng Q, Puthiyakunnon S, Zeng Z, Yang W, Qiu J, et al. Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep. 2017;7:43305. doi:10.1038/srep43305
Isayenko O, Minukhin V, Minukhin D, Yevtushenko D, Lavrinenko A, Hroma V. Metabolitic complex of lactobacteria infected with multi-resistant strains Lelliottia amnigena wounds in conditions in vivo. Clin Prev Med. 2025;(2). doi:10.31612/2616-4868.2.2025.11. Available from: https://cp-medical.com/index.php/journal/article/view/538
Jayakumar J, Vinod V, Biswas L, Kumar VA, Biswas R. Exploring alternative strategies for Staphylococcus aureus nasal decolonization: insights from preclinical studies. Lett Appl Microbiol. 2023 Dec 7;76(12):ovad137. doi:10.1093/lambio/ovad137. PMID:38066697
Touati A, Ibrahim NA, Idres T. Disarming Staphylococcus aureus: review of strategies combating this resilient pathogen by targeting its virulence. Pathogens. 2025;14(4):386. doi:10.3390/pathogens14040386
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, Mrochen DM, Trübe P, Bröker BM, et al. Discovery of Staphylococcus aureus adhesion inhibitors by automated imaging and their characterization in a mouse model of persistent nasal colonization. Microorganisms. 2021;9(3):631. doi:10.3390/microorganisms9030631
Wu X, Wang H, Xiong J, Yang G-X, Hu J-F, Zhu Q, Chen Z. Staphylococcus aureus biofilm: formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm. 2024;7:100175. doi:10.1016/j.bioflm.2023.100175
Kim SJ, Chang J, Rimal B, Yang H, Schaefer J. Surface proteins and the formation of biofilms by Staphylococcus aureus. Biochim Biophys Acta Biomembr. 2018 Mar;1860(3):749-56. doi:10.1016/j.bbamem.2017.12.003. PMID:29229527; PMCID:PMC5780200
Jiang X, Yan X, Gu S, Yang Y, Zhao L, He X, et al. Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion. Future Microbiol. 2019 Sep;14:1133-46. doi:10.2217/fmb-2018-0354. PMID:31512521
Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S, et al. Adhesive properties of Staphylococcus aureus slime-producing strains isolated from Tunisian patients. Microb Pathog. 2017 Mar;104:84-9. doi: 10.1016/j.micpath.2017.01.017. Epub 2017 Jan 11.
Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, et al. Staphylococcus aureus ST121 clone causes skin and soft tissue infections, bacteremia, and bone and joint infections. Microb Pathog. 2019 Feb;127:12-20. doi: 10.1016/j.micpath.2018.11.039. Epub 2018 Nov 27.
Xue X, Gao Y, Liu F, Du P, Li C, Liu Y, et al. Purification, characterization, and identification of a novel bacteriocin produced by Lacticaseibacillus casei KLS1, and its antimicrobial mechanism against Staphylococcus aureus. LWT. 2024;200:116207. doi: 10.1016/j.lwt.2024.116207. Available from: https://www.sciencedirect.com/science/article/pii/S0023643824004869
Piewngam P. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe. 2024 Jun;5(6):e606-18. doi: 10.1016/S2666-5247(24)00040-5. Available from: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(24)00040-5/fulltext
Saidi N, Saderi H, Owlia P, Soleimani M. Anti-biofilm potential of Lactobacillus casei and Lactobacillus rhamnosus cell-free supernatant extracts against Staphylococcus aureus. Adv Biomed Res. 2023 Feb 25;12:50. doi: 10.4103/abr.abr_156_21. PMID: 37057221; PMCID: PMC10086653. Available from: https://pubmed.ncbi.nlm.nih.gov/37057221/
Hindieh P, Yaghi J, Assaf JC, et al. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express. 2024;14:112. doi: 10.1186/s13568-024-01770-9. Available from: https://amb-express.springeropen.com/articles/10.1186/s13568-024-01770-9
Carvalho FM, Mergulhão FJM, Gomes LC. Using Lactobacilli to fight Escherichia coli and Staphylococcus aureus biofilms on urinary tract devices. Antibiotics (Basel). 2021 Dec 14;10(12):1525. doi: 10.3390/antibiotics10121525. PMID: 34943738; PMCID: PMC8698619. Available from: https://pubmed.ncbi.nlm.nih.gov/34943738/
Kiousi DE, Panopoulou M, Pappa A, Galanis A. Lactobacilli-host interactions inhibit Staphylococcus aureus and Escherichia coli-induced cell death and invasion in a cellular model of infection. Front Microbiol. 2024;15:1501119. doi: 10.3389/fmicb.2024.1501119. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1501119/full
Dubey AK, Sharma M, Parul, Raut S, Gupta P, Khatri N. Healing wounds, defeating biofilms: Lactobacillus plantarum in tackling MRSA infections. Front Microbiol. 2023;14:1284195. doi: 10.3389/fmicb.2023.1284195. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1284195/full58.
Jiang YH, Xin WG, Yang LY, Ying JP, Zhao ZS, Lin LB, et al. A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: purification, antibacterial characterization, and antibiofilm activity. J Dairy Sci. 2022 Mar;105(3):2094-107. doi: 10.3168/jds.2021-21126. PMID: 35180941. Available from: https://pubmed.ncbi.nlm.nih.gov/35180941/
Kang S, Yang Y, Hou W, Zheng Y. Inhibitory effects of lactobionic acid on biofilm formation and virulence of Staphylococcus aureus. Foods. 2024 Aug 31;13(17):2781. doi: 10.3390/foods13172781. PMID: 39272546; PMCID: PMC11395522. Available from: https://pubmed.ncbi.nlm.nih.gov/39272546/
Al-Madboly LA, Aboulmagd A, El-Salam MA, El-Dosoky R, Hassan M, et al. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact. 2024;23:343. doi: 10.1186/s12934-024-02610-y. Available from: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-024-02610-y
Aboelnaga N, Elsayed SW, Abdelsalam NA, El-Attar NE, et al. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal. 2024;22:188. doi: 10.1186/s12964-024-01511-2. Available from: https://biosignaling.biomedcentral.com/articles/10.1186/s12964-024-01511-2
Ghosh C, Das MC, Acharjee S, Bhattacharjee S, Sandhu P, Kumari M, et al. Combating Staphylococcus aureus biofilm formation: the inhibitory potential of tormentic acid and 23-hydroxycorosolic acid. Arch Microbiol. 2024;206(1):25. doi: 10.1007/s00203-023-03762-y. PMID: 38108905. Available from: https://pubmed.ncbi.nlm.nih.gov/38108905/
Hindieh P, Yaghi J, Assaf JC, Tannous J, et al. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express. 2024;14:112. doi: 10.1186/s13568-024-01770-9. Available from: https://amb-express.springeropen.com/articles/10.1186/s13568-024-01770-9
He J, Cui Y, Liu Y, Mao J, Dong Y, Yao R, et al. Resveratrol inhibits the formation of Staphylococcus aureus biofilms by reducing PIA, eDNA release, and ROS production. Front Vet Sci. 2025;12:1594239. doi: 10.3389/fvets.2025.1594239. Available from: https://www.frontiersin.org/articles/10.3389/fvets.2025.1594239/full
Ibraheim HK, Madhi KS, Baqer GK, Gharban HAJ. Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. Vet World. 2023;16(3):491-9. doi: 10.14202/vetworld.2023.491-499. Available from: https://www.veterinaryworld.org/Vol.16/March-2023/9.html
Mao Y, Wang Y, Luo X, Chen X, Wang G. Impact of cell-free supernatant of lactic acid bacteria on Staphylococcus aureus biofilm and its metabolites. Front Vet Sci. 2023;10:1184989. doi: 10.3389/fvets.2023.1184989. Available from: https://www.frontiersin.org/articles/10.3389/fvets.2023.1184989/full
Song Y, Zhou Y, Pan Y. Discovery and characterization of a novel bacteriocin that strongly inhibits Staphylococcus aureus. Fermentation. 2024;10(7):355. doi: 10.3390/fermentation10070355. Available from: https://doi.org/10.3390/fermentation10070355
Wolden R, Ovchinnikov KV, Venter HJ, Oftedal TF, Diep DB, Cavanagh JP. The novel bacteriocin romsacin from Staphylococcus haemolyticus inhibits Gram-positive WHO priority pathogens. Microbiol Spectr. 2023;11(6):e00869-23. doi: 10.1128/spectrum.00869-23. Available from: https://doi.org/10.1128/spectrum.00869-23
Ponce Benavente L, Wagemans J, Hinkel D, Aguerri Lajusticia A, Lavigne R, Trampuz A, et al. Targeted enhancement of bacteriophage activity against antibiotic-resistant Staphylococcus aureus biofilms through an evolutionary assay. Front Microbiol. 2024;15:1372325. doi: 10.3389/fmicb.2024.1372325. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1372325/full
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annals of Mechnikov's Institute

This work is licensed under a Creative Commons Attribution 4.0 International License.