Study of biomechanical parameters of kickboxers with different training experience

Authors

DOI:

https://doi.org/10.15391/ed.2024-2.07

Keywords:

kickboxing, training experience, biomechanical indicators, axes, segments

Abstract

Purpose: to carry out a comparative analysis of biomechanical indicators of kickboxers with different training experience. Material and methods. The study was conducted with the participation of 23 kickboxing athletes, divided into 2 groups. Group 1 – 11 athletes, average age (14,00±0,56) years, training experience (0,65±0,18) years. Group 2 – 12 athletes, average age (13,75±1,04) years, training experience (5,00±0,58) years. Anthropometric studies included determination of body length and weight. The calculation of the main biomechanical parameters was carried out according to special regression equations. The mass of individual limb segments, the position of the centers of mass on the longitudinal axis of the segments, and the main central moments of inertia relative to the main axes of the human body (sagittal, frontal and longitudinal) were determined. The median, 1st and 3rd quartiles were determined. Results: significant differences were established in all biomechanical parameters. Athletes of group 1 had greater mass values of the foot (Q=7), lower leg (Q=7), thigh (Q=6), hand (Q=8), forearm (Q=6) and shoulder (Q=6). The location of the center of mass on the longitudinal axis of the segment was further from the proximal end in group 1. This was confirmed for the foot (Q=8), lower leg (Q=7), thigh (Q=6), hand (Q=7), forearm (Q=6) and shoulder (Q=6). The main central moments of inertia in group 1 were significantly greater than in group 2. This has been proven for the foot (Q=7), lower leg (Q=7), thigh (Q=8), hand (Q=8), forearm (Q=8), shoulder (Q=7) for the sagittal axis. For the frontal axis: foot (Q=7), lower leg (Q=7), thigh (Q=8), hand (Q=7), forearm (Q=8), shoulder (Q=8). For the longitudinal axis: foot (Q=8), lower leg (Q=7), thigh (Q=6), hand (Q=8), forearm (Q=6), shoulder (Q=6). Conclusions. The comparative analysis confirmed the differences in biomechanical indicators among kickboxing athletes with different qualifications. More experienced athletes were characterized by lower values of all certain indicators. A smaller mass of segments reflects greater speed due to reduced inertia. The increase in the main central moments of inertia along all axes in less experienced athletes proves greater inertia. This should be assessed as evidence of less technical readiness. The use of biomechanical laws when analyzing kickboxing techniques allows us to identify the main and leading links that ensure high results. Assessing the quality of movement execution allows one to improve sports technique. The calculated biomechanical criteria can be used as a tool for assessing the technical readiness of kickboxing athletes. Their practical application makes it possible to optimize training and improve monitoring of the functional state of kickboxers.

Author Biographies

L. Podrigalo, Kharkiv State Academy of Physical Culture

Doctor Medicine, Professor

Shi Ke, Neusoft Institute Guangdong

teacher

References

Козубенко, О.С. & Тупєєв, Ю.В. (2015). Біомеханіка фізичних вправ: навчально-методичний посібник. Миколаїв: МНУ ім. В.О. Сухомлинського.

Лапутин, А.Н. (1976). Биомеханика физических упражнений. Київ: Вища школа.

Лапутін, А.М., Гамалій, В.В., Архипов, О.А., Кашуба, В.О., Носко, М.О., & Хабінець, Т.О. (2001). Біомеханіка спорту: навчальний посібник для студентів вищих навчальних закладів з фізичного виховання і спорту. Київ: Олімпійська література.

Подрігало, Л.В., & Володченко, О.А. (2016). Порівняльний аналіз біомеханічних аспектів кік-боксу та інших одноборств. Вісник Чернігівського національного педагогічного університету імені Т.Г. Шевченка, 139(1), 145–149.

Ambroży, T., Jarosław, O., Stanula, A., Kwiatkowski, A., Błach, W., Mucha, D., & Andrzej, K. (2016). A Proposal for Special Kickboxing Fitness Test. Security dimensions International & National Studies, 20, 96–110. DOI:10.24356/SD/20.5

Baitel, I., Deliu, D., Cordun, M., & Angelescu, L. (2016). Comparative study of kinematic parameters of circular punch applied in semi-contact and full-contact system. European Proceedings of Social and Behavioural Sciences, 447–454. DOI:10.15405/epsbs.2016.06.62

Brito, C. J., Aedo-Muñoz, E., & Miarka, B. (2020). Judo performance: kinanthropometric importance for technical tactical and biomechanics. Revista Brasileira de Cineantropometria e Desempenho Humano, 22, 1–7. DOI:10.1590/1980-0037.2020v22e76584

Deliu, R, Stoica, M, & Dragomir, A. (2023). Possibilities to objectify the technical elements of martial arts - kickboxing with the help of kinematic analysis. Human Movement: New Paradigms in a Changing World, 23–35. DOI:10.51267/icehhm2022bp03

Hariono, A., Rahayu, T., & Sugiharto. (2017). Developing a Performance Assessment of Kicks in the Competition Category of Pencak Silat Martial Arts. The Journal of Educational Development, 5(2), 224–237.

Korobeynikov, G., Stavinskiy, Yu., Korobeynikova, L., Volsky, D., Semenenko, V., & Zhirnov, O. (2020). Connection between sensory and motor components of the professional kickboxers' functional state. Journal of Physical Education and Sport, 20(5), 2701-2708. DOI:10.7752/jpes.2020.05368

Kutniawan, P.B., Rahayu, T., Setyawati, H., & Hartono, M. (2021). Basic Movement Standardization of the Pathol Sarang Martial Sport. Medico Legal Update, 21(1), 1591–1600. DOI:10.37506/mlu.v21i1.2548

MacHado, S.M., Osório, R.A.L., Silva, N.S., & Magini, M. (2010). Biomechanical analysis of the muscular power of martial arts athletes. Medical and Biological Engineering and Computing, 48(6), 573–577. DOI:10.1007/s11517-010-0608-z

Marfell-Jones M., Olds T., Stewart A., & Lindsay Carter, L.E.. (2012). ISAK manual, International standards for Anthropometric Assessment. In International Society for the Advancement of Kinanthropometry. The University of South Australia Holbrooks Rd, Underdale, SA: Australia.

Neto, O.P. (2011). Biomechanics of martial arts and combative sports. In Sports Medicine and Training Tools, 89–108.

Rydzik, Ł., & Ambroży, T. (2021). Physical fitness and the level of technical and tactical training of kickboxers. International Journal of Environmental Research and Public Health, 18(6), 1–9. DOI:10.3390/ijerph18063088

Szafrański, K., & Boguszewski, D. (2015). Comparison of maximum muscle torque values of extensors and flexors of the knee joint in kickboxing and taekwondo athletes. Journal of Combat Sports and Martial Arts, 6(2), 59–62. DOI:10.5604/20815735.1193625

Volodchenko, A.A., Podrigalo, L.V., Rovnaya, O.A., & Podavalenko, O.V. (2018). The prediction of success in kickboxing based on the analysis of morphofunctional, physiological, biomechanical and psychophysiological indicators. Physical education of students, 22(1), 51–56. DOI:10.15561/20755279.2018.0108.

Wąsik, J., Mosler, D., Góra, T., & Scurek, R. (2023). Conception of effective mass and effect of force – measurement of taekwon-do master. Physical Activity Review, 11(1), 11–16. DOI:10.16926/par.2023.11.02

Yao, Y. (2023). Application of sports biomechanics in the technical analysis of taekwondo kicking. Revista Brasileira de Medicina Do Esporte, 29. DOI:10.1590/1517-8692202329012022_0379

Zhang, J., Qu, Q., An, M., Li, M., Li, K., & Kim, S. (2022). Influence of Sports Biomechanics on Martial Arts Sports and Comprehensive Neuromuscular Control under the Background of Artificial Intelligence. Contrast Media and Molecular Imaging, 14. DOI:10.1155/2022/9228838

Published

2024-02-09